skip to main content


Title: PGNets: planet mass prediction using convolutional neural networks for radio continuum observations of protoplanetary discs
ABSTRACT

We developed convolutional neural networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum images. Substructures induced by young planets in protoplanetary discs can be used to infer the potential young planets’ properties. Hydrodynamical simulations have been used to study the relationships between the planet’s properties and these disc features. However, these attempts either fine-tuned numerical simulations to fit one protoplanetary disc at a time, which was time consuming, or azimuthally averaged simulation results to derive some linear relationships between the gap width/depth and the planet mass, which lost information on asymmetric features in discs. To cope with these disadvantages, we developed Planet Gap neural Networks (PGNets) to infer the planet mass from two-dimensional images. We first fit the gridded data in Zhang et al. as a classification problem. Then, we quadrupled the data set by running additional simulations with near-randomly sampled parameters, and derived the planet mass and disc viscosity together as a regression problem. The classification approach can reach an accuracy of 92 per cent, whereas the regression approach can reach 1σ as 0.16 dex for planet mass and 0.23 dex for disc viscosity. We can reproduce the degeneracy scaling α ∝ $M_\mathrm{ p}^3$ found in the linear fitting method, which means that the CNN method can even be used to find degeneracy relationship. The gradient-weighted class activation mapping effectively confirms that PGNets use proper disc features to constrain the planet mass. We provide programs for PGNets and the traditional fitting method from Zhang et al., and discuss each method’s advantages and disadvantages.

 
more » « less
Award ID(s):
1753168
NSF-PAR ID:
10361783
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4473-4484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Recent ALMA molecular line observations have revealed 3D gas velocity structure in protoplanetary discs, shedding light on mechanisms of disc accretion and structure formation. (1) By carrying out viscous simulations, we confirm that the disc’s velocity structure differs dramatically using vertical stress profiles from different accretion mechanisms. Thus, kinematic observations tracing flows at different disc heights can potentially distinguish different accretion mechanisms. On the other hand, the disc surface density evolution is mostly determined by the vertically integrated stress. The sharp disc outer edge constrained by recent kinematic observations can be caused by a radially varying α in the disc. (2) We also study kinematic signatures of a young planet by carrying out 3D planet–disc simulations. The relationship between the planet mass and the ‘kink’ velocity is derived, showing a linear relationship with little dependence on disc viscosity, but some dependence on disc height when the planet is massive (e.g. 10MJ). We predict the ‘kink’ velocities for the potential planets in DSHARP discs. At the gap edge, the azimuthally averaged velocities at different disc heights deviate from the Keplerian velocity at similar amplitudes, and its relationship with the planet mass is consistent with that in 2D simulations. After removing the planet, the azimuthally averaged velocity barely changes within the viscous time-scale, and thus the azimuthally averaged velocity structure at the gap edge is due to the gap itself and not directly caused to the planet. Combining both axisymmetric kinematic observations and the residual ‘kink’ velocity is needed to probe young planets in protoplanetary discs. 
    more » « less
  2. ABSTRACT

    Recent high angular resolution ALMA observations have revealed numerous gaps in protoplanetary discs. A popular interpretation has been that planets open them. Most previous investigations of planet gap-opening have concentrated on viscous discs. Here, we carry out 2D (axisymmetric) global simulations of gap opening by a planet in a wind-launching non-ideal MHD disc with consistent thermochemistry. We find a strong concentration of poloidal magnetic flux in the planet-opened gap, where the gas dynamics are magnetically dominated. The magnetic field also drives a fast (nearly sonic) meridional gas circulation in the denser disc regions near the inner and outer edges of the gap, which may be observable through high-resolution molecular line observations. The gap is more ionized than its denser surrounding regions, with a better magnetic field–matter coupling. In particular, it has a much higher abundance of molecular ion HCO+, consistent with ALMA observations of the well-studied AS 209 protoplanetary disc that has prominent gaps and fast meridional motions reaching the local sound speed. Finally, we provide fitting formulae for the ambipolar and Ohmic diffusivities as a function of the disc local density, which can be used for future 3D simulations of planet gap-opening in non-ideal MHD discs where thermochemistry is too computationally expensive to evolve self-consistently with the magneto-hydrodynamics.

     
    more » « less
  3. ABSTRACT

    Despite many methods developed to find young massive planets in protoplanetary discs, it is challenging to directly detect low-mass planets that are embedded in discs. On the other hand, the core-accretion theory suggests that there could be a large population of embedded low-mass young planets at the Kelvin-Helmholtz (KH) contraction phase. We adopt both 1D models and 3D simulations to calculate the envelopes around low-mass cores (several to tens of M⊕) with different luminosities, and derive their thermal fluxes at radio wavelengths. We find that, when the background disc is optically thin at radio wavelengths, radio observations can see through the disc and probe the denser envelope within the planet’s Hill sphere. When the optically thin disc is observed with the resolution reaching one disc scale height, the radio thermal flux from the planetary envelope around a 10 M⊕ core is more than 10 per cent higher than the flux from the background disc. The emitting region can be extended and elongated. Finally, our model suggests that the au-scale clump at 52 au in the TW Hydrae disc revealed by ALMA is consistent with the envelope of an embedded 10–20 M⊕ planet, which can explain the detected flux, the spectral index dip, and the tentative spirals. The observation is also consistent with the planet undergoing pebble accretion. Future ALMA and ngVLA observations may directly reveal more such low-mass planets, enabling us to study core growth and even reconstruct the planet formation history using the embedded ‘protoplanet’ population.

     
    more » « less
  4. ABSTRACT

    Gaps imaged in protoplanetary discs are suspected to be opened by planets. We compute the present-day mass accretion rates $\dot{M}_{\rm p}$ of seven hypothesized gap-embedded planets, plus the two confirmed planets in the PDS 70 disc. The accretion rates are based on disc gas surface densities Σgas from C18O observations, and planet masses Mp from simulations fitted to observed gaps. Assuming accretion is Bondi-like, we find in eight out of nine cases that $\dot{M}_{\rm p}$ is consistent with the time-averaged value given by the current planet mass and system age, Mp/tage. As system ages are comparable to circumstellar disc lifetimes, these gap-opening planets may be undergoing their last mass doublings, reaching final masses of $M_{\rm p} \sim 10\rm{\!-\!}10^2 \, M_\oplus$ for the non-PDS 70 planets, and $M_{\rm p} \sim 1\!-\!10 \, M_{\rm J}$ for the PDS 70 planets. For another 15 gaps without C18O data, we predict Σgas by assuming their planets are accreting at their time-averaged $\dot{M}_{\rm p}$. Bondi accretion rates for PDS 70b and c are orders of magnitude higher than accretion rates implied by measured U-band and H α fluxes, suggesting most of the accretion shock luminosity emerges in as yet unobserved wavebands, or that the planets are surrounded by dusty, highly extincting, quasi-spherical circumplanetary envelopes. Thermal emission from such envelopes or from circumplanetary discs, on Hill sphere scales, peaks at wavelengths in the mid-to-far-infrared and can reproduce observed mm-wave excesses.

     
    more » « less
  5. ABSTRACT

    We develop a simplified model for studying the long-term evolution of giant planets in protoplanetary discs. The model accounts for the eccentricity evolution of the planets and the dynamics of eccentric discs under the influences of secular planet–disc interactions and internal disc pressure, self-gravity, and viscosity. Adopting the ansatz that the disc precesses coherently with aligned apsides, the eccentricity evolution equations of the planet–disc system reduce to a set of linearized ordinary differential equations, which allows for fast computation of the evolution of planet–disc eccentricities over long time-scales. Applying our model to ‘giant planet + external disc’ systems, we are able to reproduce and explain the secular behaviours found in previously published hydrodynamical simulations. We re-examine the possibility of eccentricity excitation (due to secular resonance) of multiple planets embedded in a dispersing disc, and find that taking into account the dynamics of eccentric discs can significantly affect the evolution of the planets’ eccentricities.

     
    more » « less