Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8‐ and 14‐year‐old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California—coast live oak (
Due to decades of fire suppression, much of the Upper Midwest savanna habitat has converted to oak woodland. In efforts to restore oak savanna habitat, fire has been re‐introduced in many of these woodlands. A primary purpose of these burns is to kill the fire‐sensitive mesophytic tree species, which had established themselves during the decades of fire suppression, reduce the number of understory trees, and preserve the larger more widely spaced oaks. It is clear from ongoing efforts that restoring oak savannas will require frequent fires over decades, but frequent fires over the long term can also threaten the desirable oaks. Long‐term demographic studies at savanna restoration sites experiencing frequent fires are necessary to determine the extent to the frequent burns are supporting and/or confounding restoration goals. Results presented here are from a twenty‐five‐year demographic study of an Upper Midwest bur oak (
- NSF-PAR ID:
- 10361866
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Quercus agrifolia ), California black oak (Q. kelloggii ), and Oregon white oak (Q. garryana ). Although impacts varied somewhat by species and experiment, herbivory by black‐tailed deer (Odocoileus hemionus columbianus ) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus andPeromyscus maniculatus ) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees. -
Neighbours consistently influence tree growth and survival in a frequently burned open oak landscape
Abstract Successful management of fire‐prone woody ecosystems is challenging and requires knowledge of the spatial arrangement of the trees and how the tree distribution patterns influence the nature and consequences of subsequent fires.
In open tree landscapes, trees are often aggregated, and the ability of trees within the clumps to survive fires plays a significant role in determining subsequent landscape dynamics. If positive interactions exist among neighbouring trees, this will help maintain the patterns of clumped trees. However, the tree‐aggregated landscape will continue to exist only if the positive neighbour interactions persist consistently over time. In cases where disturbances are episodic, detecting these interactions is only possible through long‐term studies.
Data reported here are from a 25‐year study involving the annual tree censusing of a large grid‐plot in a frequently burned open oak landscape dominated by
Quercus macrocarpa andQuercus ellipsoidallis . The results showed that while having neighbours reduced tree growth, neighbours consistently facilitated survival, irrespective as to whether the neighbours were conspecifics or heterospecifics. Trees of all sizes in close proximity to neighbours were considerably more likely to survive fire throughout the study. This neighbour facilitation is likely the result of a reduction of both herbaceous and woody fuel within clumps.Synthesis . This is the first study to document consistent neighbour facilitation among trees experiencing repeated stressors over an extended time period. Our findings support the literature documenting positive neighbour effects among plants in stressful and highly disturbed environments, in accordance with the stress‐gradient hypothesis. While aggregated tree regeneration is typically viewed as the primary cause for the development of tree clumps in fire‐prone ecosystems, our study showed that aggregated tree survival, by itself, can also be an important driver of post‐fire tree clumping. Our results support the growing literature emphasizing the importance of landscape heterogeneity as a driver of resilience in fire‐prone tree ecosystems, and the value of maintaining or creating this heterogeneity during forest management. -
Abstract Self‐reinforcing differences in fire frequency help closed‐canopy forests, which resist fire, and open woodlands, which naturally burn often, to co‐occur stably at landscape scales. Forest tree seedlings, which could otherwise encroach and overgrow woodlands, are killed by regular fire, yet fire has other effects that may also influence these feedbacks. In particular, many forest trees require symbiotic ectomycorrhizal fungi in order to establish. By restructuring soil fungal communities, fire might affect the availability of symbionts or the potential for symbiont sharing between encroaching trees and woodland vegetation.
To investigate this possibility, we performed a soil bioassay experiment using inoculum from burned and unburned oak woodlands and Douglas‐fir forests. We examined how fire, ecosystem type, and neighboring heterospecific seedlings affect fungal root community assembly of Douglas‐firs and oaks. We asked whether heterospecific seedlings facilitated fungal colonization of seedling roots in non‐native soil, and if so, whether fire influenced this interaction.
External fungal colonization of oak roots was more influenced by fire and ecosystem type than by the presence of a Douglas‐fir, and oaks increased the likelihood that Douglas‐fir roots would be colonized by fungi in oak woodland soil. Yet, fire increased colonization of Douglas‐fir in oak soil, diminishing the otherwise crucial role played by oak facilitation. Fire also strengthened the positive effect of Douglas‐firs on oak root‐associated fungal diversity in Douglas‐fir forest soil.
Prior work shows that fire supports woodland ecosystems by stemming recruitment of encroaching seedlings. Here, we find evidence that it may contrastingly reduce fungal limitation of invasive seedling growth and establishment, otherwise relieved only by facilitation. Future work can investigate how these opposing effects might contribute to the net impact of changes in fire regime on landcover stability.
Read the free
Plain Language Summary for this article on the Journal blog. -
Assessing the characteristics of fuel flammability during fire is of major significance regarding fire intensity and fire spread control. Under the background of shifting forest composition from heliophytic to mesophytic species in mixed-oak forests, our objective is to determine the impacts of species-driven changes in fuel flammability characteristics and the specific relationships between fuel ignition variations at the species level. Oak and maple fuels were collected from ninety-four plots established in Zaleski State Forest, Ohio. A total of 30 combustion samples were separated (15 oak samples and 15 maple samples), with each combustion sample weighing 20 g to ignite under a laboratory fume hood. Our results determined that oak fuel showed significantly higher flame temperatures than maple fuel, and the fuel consumption and combustion duration time both varied between oak and maple fuel. These findings indicated that the shift from oak forest to mesophytic species could change a fire’s behavior. Combined with the cooler, moister, and less-flammable forest conditions generated by these mesophytic species, fires may not be able to reach their historical fire intensities, suggesting that updated data and new insights are needed for fire management.
-
null (Ed.)Eastern redcedar (Juniperus virginiana L., redcedar) encroachment is transitioning the oak-dominated Cross-Timbers of the southern Great Plain of the USA into mixed-species forests. However, it remains unknown how the re-assemblage of tree species in a semiarid to sub-humid climate affects species-specific water use and competition, and ultimately the ecosystem-level water budget. We selected three sites representative of oak, redcedar, and oak and redcedar mixed stands with a similar total basal area (BA) in a Cross-Timbers forest near Stillwater, Oklahoma. Sap flow sensors were installed in a subset of trees in each stand representing the distribution of diameter at breast height (DBH). Sap flow of each selected tree was continuously monitored over a period of 20 months, encompassing two growing seasons between May 2017 and December 2018. Results showed that the mean sap flow density (Sd) of redcedar was usually higher than post oaks (Quercus stellata Wangenh.). A structural equation model showed a significant correlation between Sd and shallow soil moisture for redcedar but not for post oak. At the stand level, the annual water use of the mixed species stand was greater than the redcedar or oak stand of similar total BA. The transition of oak-dominated Cross-Timbers to redcedar and oak mixed forest will increase stand-level transpiration, potentially reducing the water available for runoff or recharge to groundwater.more » « less