skip to main content


Title: Greenland Ice Sheet Elevation Change: Direct Observation of Process and Attribution at Summit
Abstract

Greenland Ice Sheet surface elevation is changing as mass loss accelerates. In understanding elevation change, the magnitudes of physical processes involved are important for interpretation of altimetry and assessing changes in these processes. The four key processes are surface mass balance (SMB), firn densification, ice dynamics, and isostatic adjustment. We quantified these processes at Summit, Greenland, where monthly Global Navigation Satellite System (GNSS) snowmobile traverses measured elevation change from 2008 to 2018. We find an elevation increase of 0.019 m a−1. The sum of the effects of the four processes reproduces the measured elevation time series, in linear trend and in intra‐annual variability. The short‐term variability in elevation is primarily explained by the variability in SMB. Since SMB has not changed significantly over the last century, and the other processes change over longer time scales, the elevation change likely has been ongoing for at least the last 100 years.

 
more » « less
NSF-PAR ID:
10361972
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The rate of growth or retreat of the Greenland and Antarctic ice sheets remains a highly uncertain component of future sea level change. Here we examine the simulation of Greenland ice sheet surface mass balance (GrIS SMB) in a development branch of the ModelE2 version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM). GCMs are often limited in their ability to represent SMB compared with polar region regional climate models. We compare ModelE2‐simulated GrIS SMB for present‐day (1996–2005) simulations with fixed ocean conditions, at a spatial resolution of 2° latitude by 2.5° longitude (~200 km), with SMB simulated by the Modèle Atmosphérique Régionale (MAR) regional climate model (1996–2005 at a 25‐km resolution). ModelE2 SMB agrees well with MAR SMB on the whole, but there are distinct spatial patterns of differences and large differences in some SMB components. The impacts of changes to the ModelE2 surface are tested, including a subgrid‐scale representation of SMB with surface elevation classes. This has a minimal effect on ice sheet‐wide SMB but corrects local biases. Replacing fixed surface albedo with satellite‐derived values and an age‐dependent scheme has a larger impact, increasing simulated melt by 60%–100%. We also find that lower surface albedo can enhance the effects of elevation classes. Reducing ModelE2 surface roughness length to values closer to MAR reduces sublimation by ~50%. Further work is required to account for meltwater refreezing in ModelE2 and to understand how differences in atmospheric processes and model resolution influence simulated SMB.

     
    more » « less
  2. null (Ed.)
    Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation. 
    more » « less
  3. Abstract

    Substantial marine, terrestrial, and atmospheric changes have occurred over the Greenland region during the last century. Several studies have documented record‐levels of Greenland Ice Sheet (GrIS) summer melt extent during the 2000s and 2010s, but relatively little work has been carried out to assess regional climatic changes in other seasons. Here, we focus on the less studied cold‐season (i.e., autumn and winter) climate, tracing the long‐term (1873–2013) variability of Greenland's air temperatures through analyses of coastal observations and model‐derived outlet glacier series and their linkages with North Atlantic sea ice, sea surface temperature (SST), and atmospheric circulation indices. Through a statistical framework, large amounts of west and south Greenland temperature variance (up tor2 ~ 50%) can be explained by the seasonally‐contemporaneous combination of the Greenland Blocking Index (GBI) and the North Atlantic Oscillation (NAO; hereafter the combination of GBI and NAO is termed GBI). Lagged and concomitant regional sea‐ice concentration (SIC) and the Atlantic Multidecadal Oscillation (AMO) seasonal indices account for small amounts of residual air temperature variance (r2 < ~10%) relative to the GBI. The correlations between GBI and cold‐season temperatures are predominantly positive and statistically‐significant through time, while regional SIC conditions emerge as a significant covariate from the mid‐20th century through the conclusion of the study period. The inclusion of the cold‐season Pacific Decadal Oscillation (PDO) in multivariate analyses bolsters the air temperature variance explained by the North Atlantic regional predictors, suggesting the remote, background climate state is important to long‐term Greenland temperature variability. These findings imply that large‐scale tropospheric circulation has a strong control on surface temperature over Greenland through dynamic and thermodynamic impacts and stress the importance of understanding the evolving two‐way linkages between the North Atlantic marine and atmospheric environment in order to more accurately predict Greenland seasonal climate variability and change through the 21st century.

     
    more » « less
  4. Abstract Regional assessments of ice elevation change provide insight into the processes controlling an ice sheet's geometric response to climate forcing. In Southwest Greenland's land terminating sector (SWLTS), it is presumed that ice surface elevation changes result solely from changing surface mass balance (SMB). Here we test this assumption by developing a multi-decadal (1985–2017) record of elevation change from digital elevation models (DEMs) and comparing it to regional climate model output and available records of ice speed. The SWLTS thinned by >12 m on average over the full 32-year period, but the change was highly variable in time and space. Thinning was amplified in the central region of the SWLTS, relative to the north and south. During 1985–2007, the north and south regions demonstrated net thickening while the central region thinned. Regional differences in elevation change are inconsistent with SMB anomalies, indicating that enhanced ice flow in the north and south contributed to thickening during this early time interval. While clear validation in the south is prevented by incomplete velocity data, historical surface speeds in the north were elevated. These findings support the interpretation that changing ice flow can influence ice surface elevation in the slow-moving SWLTS. 
    more » « less
  5. Abstract

    Meltwater inputs to moulins regulate Greenland Ice Sheet sliding speeds by controlling water pressure in the most connected regions of the subglacial drainage system. While moulin storage capacities are a critical control on subglacial water pressure, few observations exist to constrain storage. Using direct observations inside moulins, we show that moulin cross‐sectional areas can be at least 500 m2, far greater than is observed at the surface or assumed in models. Moulin water level measurements and numerical modeling reveal that diurnal variability in moulin water pressure is highly attenuated in moulins with large storage volumes (3% ice pressure), relative to moulins with smaller storage volumes (25% ice pressure). Because large variability in moulin water pressure is linked to processes that ultimately reduce ice sliding speeds, ice sliding speeds in areas drained by large moulins may be more sensitive to long‐term increases in meltwater than areas drained by small moulins.

     
    more » « less