skip to main content


Title: High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2)
Abstract

The Community Earth System Model Version 2 (CESM2) has an equilibrium climate sensitivity (ECS) of 5.3 K. ECS is an emergent property of both climate feedbacks and aerosol forcing. The increase in ECS over the previous version (CESM1) is the result of cloud feedbacks. Interim versions of CESM2 had a land model that damped ECS. Part of the ECS change results from evolving the model configuration to reproduce the long‐term trend of global and regional surface temperature over the twentieth century in response to climate forcings. Changes made to reduce sensitivity to aerosols also impacted cloud feedbacks, which significantly influence ECS. CESM2 simulations compare very well to observations of present climate. It is critical to understand whether the high ECS, outside the best estimate range of 1.5–4.5 K, is plausible.

 
more » « less
NSF-PAR ID:
10362020
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
14
ISSN:
0094-8276
Page Range / eLocation ID:
p. 8329-8337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We examine the response of the Community Earth System Model Versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO2concentrations (4xCO2) and to 1% annually increasing CO2concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5 K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly—2.1 K in CESM1 and 2.0 K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab‐ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully coupled Earth system model (ESM) experiments for the same level of CO2increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.

     
    more » « less
  2. Abstract

    The Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing the time‐step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax produces a more physically consistent treatment of mixed‐phase clouds, which leads to an increase in cloud ice content and a weaker shortwave cloud feedback over mid‐to‐high latitudes and the Southern Hemisphere subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax and microphysical substepping, we have developed a paleoclimate‐calibrated CESM2 (PaleoCalibr), which simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol‐cloud interaction than CESM2. PaleoCalibr represents a physically more consistent treatment of cloud microphysics than CESM2 and is a valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future climate projection.

     
    more » « less
  3. Abstract

    The upper end of the equilibrium climate sensitivity (ECS) has increased substantially in the latest Coupled Model Intercomparison Projects phase 6 with eight models (as of this writing) reporting an ECS > 5°C. The Community Earth System Model version 2 (CESM2) is one such high‐ECS model. Here we perform paleoclimate simulations of the Last Glacial Maximum (LGM) using CESM2 to examine whether its high ECS is realistic. We find that the simulated LGM global mean temperature decrease exceeds 11°C, greater than both the cooling estimated from proxies and simulated by an earlier model version (CESM1). The large LGM cooling in CESM2 is attributed to a strong shortwave cloud feedback in the newest atmosphere model. Our results indicate that the high ECS of CESM2 is incompatible with LGM constraints and that the projected future warming in CESM2, and models with a similarly high ECS, is thus likely too large.

     
    more » « less
  4. Abstract

    Simulations of 21st century climate with Community Earth System Model version 2 (CESM2) using the standard atmosphere (CAM6), denoted CESM2(CAM6), and the latest generation of the Whole Atmosphere Community Climate Model (WACCM6), denoted CESM2(WACCM6), are presented, and a survey of general results is described. The equilibrium climate sensitivity (ECS) of CESM2(CAM6) is 5.3°C, and CESM2(WACCM6) is 4.8°C, while the transient climate response (TCR) is 2.1°C in CESM2(CAM6) and 2.0°C in CESM2(WACCM6). Thus, these two CESM2 model versions have higher values of ECS than the previous generation of model, the CESM (CAM5) (hereafter CESM1), that had an ECS of 4.1°C, though the CESM2 versions have lower values of TCR compared to the CESM1 with a somewhat higher value of 2.3°C. All model versions produce credible simulations of the time evolution of historical global surface temperature. The higher ECS values for the CESM2 versions are reflected in higher values of global surface temperature increase by 2,100 in CESM2(CAM6) and CESM2(WACCM6) compared to CESM1 between comparable emission scenarios for the high forcing scenario. Future warming among CESM2 model versions and scenarios diverges around 2050. The larger values of TCR and ECS in CESM2(CAM6) compared to CESM1 are manifested by greater warming in the tropics. Associated with a higher climate sensitivity, for CESM2(CAM6) the first instance of an ice‐free Arctic in September occurs for all scenarios and ensemble members in the 2030–2050 time frame, but about a decade later in CESM2(WACCM6), occurring around 2040–2060.

     
    more » « less
  5. null (Ed.)
    Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation. 
    more » « less