skip to main content


Title: Climatology Explains Intermodel Spread in Tropical Upper Tropospheric Cloud and Relative Humidity Response to Greenhouse Warming
Abstract

The response of upper tropospheric clouds and relative humidity (RH) to warming is important to the overall sensitivity of the Earth to increasing greenhouse gas concentrations. Previous research has shown that changes in hydrologic fields should closely track rising isotherms in a warming climate. Here we show that the distribution of tropical clouds and RH in general circulation models is approximately constant under greenhouse warming when using temperature as a vertical coordinate. By assuming that these fields are an invariant function of atmospheric temperature and that temperature change follows a dilute moist adiabat, we are able to accurately predict cloud fraction and RH changes in the tropical upper troposphere (150–400 hPa) in 27 general circulation models. Our results indicate that intermodel spread in changes of tropical upper tropospheric clouds and RH is closely related to differences in model climatology and could be substantially reduced if model ensembles reliably reproduced observed climatologies.

 
more » « less
NSF-PAR ID:
10448155
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
22
ISSN:
0094-8276
Page Range / eLocation ID:
p. 13399-13409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previous work has found that as the surface warms the large‐scale tropical circulations weaken, convective anvil cloud fraction decreases, and atmospheric static stability increases. Circulation changes inevitably lead to changes in the humidity and cloud fields which influence the surface energetics. The exchange of mass between the boundary layer (BL) and the midtroposphere has also been shown to weaken in global climate models. What has remained less clear is how robust these changes in the circulation are to different representations of convection, clouds, and microphysics in numerical models. We use simulations from the Radiative‐Convective Equilibrium Model Intercomparison Project to investigate the interaction between overturning circulations, surface temperature, and atmospheric moisture. We analyze the underlying mechanisms of these relationships using a 21‐member model ensemble that includes both General Circulation Models and Cloud‐system Resolving Models. We find a large spread in the change of intensity of the overturning circulation. Both the range of the circulation intensity, and its change with warming can be explained by the range of the mean upward vertical velocity. There is also a consistent decrease in the exchange of mass between the BL and the midtroposphere. However, the magnitude of the decrease varies substantially due to the range of responses in both mean precipitation and mean precipitable water. We hypothesize based on these results that despite well understood thermodynamic constraints, there is still a considerable ability for the cloud fields and the precipitation efficiency to drive a substantial range of tropical convective responses to warming.

     
    more » « less
  2. Abstract

    The Walker circulation connects the regions with deep atmospheric convection in the western tropical Pacific to the shallow‐convection, tropospheric subsidence, and stratocumulus cloud decks of the eastern Pacific. The purpose of this study is to better understand the multi‐scale interactions between the Walker circulation, cloud systems, and interactive radiation. To do this we simulate a mock‐Walker Circulation with a full‐physics general circulation model using idealized boundary conditions. Our experiments use a doubly‐periodic domain with grid‐spacing of 1, 2, 25, and 100 km. We thus span the range from General Circulation Models (GCMs) to Cloud‐system Resolving Models (CRMs). Our model is derived from the Geophysical Fluid Dynamics Laboratory atmospheric GCM (AM4.0). We find substantial differences in the mock‐Walker circulation simulated by our GCM‐like and CRM‐like experiments. The CRM‐like experiments have more upper level clouds, stronger overturning circulations, and less precipitation. The GCM‐like experiments have a low‐level cloud fraction that is up to 20% larger. These differences leads to opposite atmospheric responses to changes in the longwave cloud radiative effect (LWCRE). Active LWCRE leads to increased precipitation for our GCMs, but decreased precipitation for our CRMs. The LWCRE leads to a narrower rising branch of the circulation and substantially increases the fraction of precipitation from the large‐scale cloud parameterization. This work demonstrates that a mock‐Walker circulation is a useful generalization of radiative convective equilibrium that includes a large‐scale circulation.

     
    more » « less
  3. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  4. Abstract

    The linearity of global‐mean outgoing longwave radiation (OLR) with surface temperature is a basic assumption in climate dynamics. This linearity manifests in global climate models, which robustly produce a global‐mean longwave clear‐sky (LWCS) feedback of 1.9 W/m2/K, consistent with idealized single‐column models (Koll & Cronin, 2018,https//:doi.org/10.1073/pnas.1809868115). However, there is considerable spatial variability in the LWCS feedback, including negative values over tropical oceans (known as the “super‐greenhouse effect”) which are compensated for by larger values in the subtropics/extratropics. Therefore, it is unclear how the idealized single‐column results are relevant for the global‐mean LWCS feedback in comprehensive climate models. Here we show with a simple analytical theory and model output that the compensation of this spatial variability to produce a robust global‐mean feedback can be explained by two facts: (1) When conditioned upon free‐tropospheric column relative humidity (RH), the LWCS feedback is independent of RH, and (2) the global histogram of free‐tropospheric column RH is largely invariant under warming.

     
    more » « less
  5. Abstract

    The uncertainty in polar cloud feedbacks calls for process understanding of the cloud response to climate warming. As an initial step toward improved process understanding, we investigate the seasonal cycle of polar clouds in the current climate by adopting a novel modeling framework using large eddy simulations (LES), which explicitly resolve cloud dynamics. Resolved horizontal and vertical advection of heat and moisture from an idealized general circulation model (GCM) are prescribed as forcing in the LES. The LES are also forced with prescribed sea ice thickness, but surface temperature, atmospheric temperature, and moisture evolve freely without nudging. A semigray radiative transfer scheme without water vapor and cloud feedbacks allows the GCM and LES to achieve closed energy budgets more easily than would be possible with more complex schemes. This enables the mean states in the two models to be consistently compared, without the added complications from interaction with more comprehensive radiation. We show that the LES closely follow the GCM seasonal cycle, and the seasonal cycle of low‐level clouds in the LES resembles observations: maximum cloud liquid occurs in late summer and early autumn, and winter clouds are dominated by ice in the upper troposphere. Large‐scale advection of moisture provides the main source of water vapor for the liquid‐containing clouds in summer, while a temperature advection peak in winter makes the atmosphere relatively dry and reduces cloud condensate. The framework we develop and employ can be used broadly for studying cloud processes and the response of polar clouds to climate warming.

     
    more » « less