skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits
Abstract

Spinach is a nutritious leafy vegetable belonging to the family Chenopodiaceae. Here we report a high-quality chromosome-scale reference genome assembly of spinach and genome resequencing of 305 cultivated and wild spinach accessions. Reconstruction of ancestral Chenopodiaceae karyotype indicates substantial genome rearrangements in spinach after its divergence from ancestral Chenopodiaceae, coinciding with high repeat content in the spinach genome. Population genomic analyses provide insights into spinach genetic diversity and population differentiation. Genome-wide association studies of 20 agronomical traits identify numerous significantly associated regions and candidate genes for these traits. Domestication sweeps in the spinach genome are identified, some of which are associated with important traits (e.g., leaf phenotype, bolting and flowering), demonstrating the role of artificial selection in shaping spinach phenotypic evolution. This study provides not only insights into the spinach evolution and domestication but also valuable resources for facilitating spinach breeding.

 
more » « less
Award ID(s):
1855585
NSF-PAR ID:
10362072
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Studies on maize evolution and domestication are largely limited to the nuclear genomes, and the contribution of cytoplasmic genomes to selection and domestication of modern maize remains elusive. Maize cytoplasmic genomes have been classified into fertile (NA and NB) and cytoplasmic-nuclear male-sterility (CMS-S, CMS-C, and CMS-T) groups, but their contributions to modern maize breeding have not been systematically investigated.

    Results

    Here we report co-selection and convergent evolution between nuclear and cytoplasmic genomes by analyzing whole genome sequencing data of 630 maize accessions modern maize and its relatives, including 24 fully assembled mitochondrial and chloroplast genomes. We show that the NB cytotype is associated with the expansion of modern maize to North America, gradually replaces the fertile NA cytotype probably through unequal division, and predominates in over 90% of modern elite inbred lines. The mode of cytoplasmic evolution is increased nucleotypic diversity among the genes involved in photosynthesis and energy metabolism, which are driven by selection and domestication. Furthermore, genome-wide association study reveals correlation of cytoplasmic nucleotypic variation with key agronomic and reproductive traits accompanied with the diversification of the nuclear genomes.

    Conclusions

    Our results indicate convergent evolution between cytoplasmic and nuclear genomes during maize domestication and breeding. These new insights into the important roles of mitochondrial and chloroplast genomes in maize domestication and improvement should help select elite inbred lines to improve yield stability and crop resilience of maize hybrids.

     
    more » « less
  2. Societal Impact Statement

    Weedy plants are a major constraint on agricultural productivity. Weedy rice is a weed that invades rice fields worldwide and is responsible for reductions in rice yields. Studies to date have detected multiple independent weedy rice origins in different parts of the world. We investigated the origin of weedy rice in Spain and Portugal and found that it has evolved from a cultivated rice variety group grown locally. Iberian weeds carry mutations that reverse domesticated pericarp color to its ancestral red color. Our results imply that management strategies are needed to prevent the evolution of troublesome weeds from cultivated ancestors.

    Summary

    Weedy rice, a damaging conspecific weed of cultivated rice, has arisen multiple times independently around the world. Understanding all weedy rice origins is necessary to create more effective weed management strategies. The origins of weedy rice in Spain and Portugal, where there are no nativeOryzaspecies, are unknown. In this study, we try to identify the likely ancestors of Iberian weedy rice and the mechanisms involved in the evolution of two weedy traits, seed shattering, and red pericarps.

    We used genotyping by sequencing to understand the origin of Iberian weedy rice and its relationship to other weedy, wild, and cultivated rice groups worldwide. We also genotyped candidate genes for shattering and pericarp color.

    We find that weedy rice in the Iberian Peninsula has primarily evolved through de‐domestication oftemperate japonicacultivars, with minor origins from exotic weedy rice. Iberian weeds have evolved the capacity to shatter seeds via novel loci and have acquired red pericarps via compensatory mutations in theRcdomestication gene. Our results suggest the Iberian weeds have experienced selection at multiple locations in the genome to establish as weeds, likely targeting male fertility genes among other functions.

    Our characterization of Iberian weedy rice adds to the growing evidence that de‐domestication of cultivated rice varieties is the main source of weedy rice worldwide. Their evolutionary versatility explains why weedy rice continues to be one of the most problematic weeds of cultivated rice.

     
    more » « less
  3. Abstract

    Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.

     
    more » « less
  4. Abstract

    Cisandtransregulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1hybrids, revealing genome-wide (~15%) and often compensatorycisandtransregulatory changes under divergence and domestication. The high level oftransevolution (54%–64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.

     
    more » « less
  5. Abstract

    Selection regimes and population structures can be powerfully changed by domestication and feralization, and these changes can modulate animal fitness in both captive and natural environments. In this review, we synthesize recent studies of these two processes and consider their impacts on organismal and population fitness. Domestication and feralization offer multiple windows into the forms and mechanisms of maladaptation. Firstly, domestic and feral organisms that exhibit suboptimal traits or fitness allow us to identify their underlying causes within tractable research systems. This has facilitated significant progress in our general understandings of genotype–phenotype relationships, fitness trade‐offs, and the roles of population structure and artificial selection in shaping domestic and formerly domestic organisms. Additionally, feralization of artificially selected gene variants and organisms can reveal or produce maladaptation in other inhabitants of an invaded biotic community. In these instances, feral animals often show similar fitness advantages to other invasive species, but they are also unique in their capacities to modify natural ecosystems through introductions of artificially selected traits. We conclude with a brief consideration of how emerging technologies such as genome editing could change the tempos, trajectories, and ecological consequences of both domestication and feralization. In addition to providing basic evolutionary insights, our growing understanding of mechanisms through which artificial selection can modulate fitness has diverse and important applications—from enhancing the welfare, sustainability, and efficiency of agroindustry, to mitigating biotic invasions.

     
    more » « less