skip to main content


Title: Investigation of red blood cell partitioning in an in vitro microvascular bifurcation
Abstract

There is a long history of research examining red blood cell (RBC) partitioning in microvasculature bifurcations. These studies commonly report results describing partitioning that exists as either regular partitioning, which occurs when the RBC flux ratio is greater than the bulk fluid flowrate ratio, or reverse partitioning when the RBC flux ratio is less than or equal to that of the bulk fluid flowrate. This paper presents a study of RBC partitioning in a single bifurcating microchannel with dimensions of 6 to 16 μm, investigating the effects of hematocrit, channel width, daughter channel flowrate ratio, and bifurcation angle. The erythrocyte flux ratio,N*, manifests itself as either regular or reverse partitioning, and time‐dependent partitioning is much more dynamic, occurring as both regular and reverse partitioning. We report a significant reduction in the well‐known sigmoidal variation of the erythrocyte flux ratio (N*) versus the volumetric flowrate ratio (Q*), partitioning behavior with increasing hematocrit in microchannels when the channel dimensions are comparable with cell size. RBCs “lingering” or jamming at the bifurcation were also observed and quantified in vitro. Results from trajectory analyses suggest that the RBC position in the feeder channel strongly affects both partitioning and lingering frequency of RBCs, with both being significantly reduced when RBCs flow on streamlines near the edge of the channel as opposed to the center of the channel. Furthermore, our experiments suggest that even at low Reynolds number, partitioning is affected by the bifurcation angle by increasing cell–cell interactions. The presented results provide further insight into RBC partitioning as well as perfusion throughout the microvasculature.

 
more » « less
NSF-PAR ID:
10362137
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Artificial Organs
Volume:
45
Issue:
9
ISSN:
0160-564X
Page Range / eLocation ID:
p. 1083-1096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Malaria pathogenesis is caused by the replication ofPlasmodiumparasites within the red blood cells (RBCs) of the vertebrate host. This selective pressure has favored the evolution of protective polymorphisms in erythrocyte proteins, a subset of which serve as cognate receptors for parasite invasion ligands. Recently, the generation of RBCs from immortalized hematopoietic stem cells (HSCs) has offered a more tractable system for genetic manipulation and long‐term in vitro culture, enabling elucidation of the functional determinants of host susceptibility in vitro. Here we report the generation of an immortalized erythroid progenitor cell line (EJ cells) from as few as 100 000 peripheral blood mononuclear cells. It offers a robust method for the creation of customized model systems from small volumes of peripheral blood. The EJ cell differentiation mirrored erythropoiesis of primary HSCs, yielding orthochromatic erythroblasts and enucleated RBCs after eight days (ejRBCs). The ejRBCs supported invasion by bothP. vivaxandP. falciparum. To demonstrate the genetic tractability of this system, we used CRISPR/Cas9 to disrupt the Duffy Antigen/Receptor for Chemokines (DARC) gene, which encodes the canonical receptor ofP. vivaxin humans. Invasion ofP. vivaxinto this DARC‐knockout cell line was strongly inhibited providing direct genetic evidence thatP. vivaxrequires DARC for RBC invasion. Further, genetic complementation of DARC restoredP. vivaxinvasion. Taken together, the peripheral blood immortalization method presented here offers the capacity to generate biologically representative model systems for studies of blood‐stage malaria invasion from the peripheral blood of donors harboring unique genetic backgrounds, or rare polymorphisms.

     
    more » « less
  2. The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.

     
    more » « less
  3. Abstract

    Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in theβ‐globingene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.

     
    more » « less
  4. Abstract

    Soluble fibrin (SF) in blood consists of monomers lacking both fibrinopeptides A with a minor population in multimeric clusters. It is a substantial component of isolated fibrinogen (fg), which spontaneously self-assembles into protofibrils progressing to fibers at sub-physiologic temperatures, a process enhanced by adsorption to hydrophobic and some metal surfaces. Comparisons of SF-rich (FR) and SF-depleted (FD) fg isolates disclosed distinct molecular imprints of each via an adsorption/desorption procedure using gold surfaced silica microplates. Accelerated plasminogen activator-induced lysis and decreased stiffness (G′) of thrombin-induced FR fg clots were revealed by thomboelastography. Erythrocyte sedimentation (ESR) in afibrinogenemic plasma (Hematocrit 25–33%) was accelerated by FR fg nearly threefold that of FD fg. Stained smears disclosed frequent rouleaux formations and fibers linking stacked erythrocytes in contrast to no rouleaux by FD fg. Rouleaux formations were more pronounced at 4 °C than at ambient temperatures and at fiber-membrane contacts displayed irregular, knobby membrane contours. One of several FR fg isolates also displayed incomplete fiber networks in cell-free areas. What is more, pre-mixing FR fg with each of three monoclonal IgG anti-fg antibodies at 1.5 mol/mol fg, that inhibited fibrin polymerization, prevented rouleaux formation save occasional 2–4 erythrocyte aggregates. We conclude that spontaneously generated SF fibers bound to erythrocytes forming intercellular links culminating in rouleaux formation and ensuing ESR acceleration which in clinical settings reflects hypercoagulability. Also, the results can explain the reported fg binding to erythrocytes via ligands such as CD47, stable in vivo RBC aggregates in capillaries, and red areas of pathologic thrombi.

     
    more » « less
  5. The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8μm RBCs pass through 0.3μm-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28μm-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4μm-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a1 and3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.

     
    more » « less