Abstract Bandstructure engineering is a key route for thermoelectric performance enhancement. Here, 20–50% Seebeck (S) enhancement is reported for XNiCuySn half‐Heusler samples based onX= Ti. This novel electronic effect is attributed to the emergence of impurity bands of finite extent, due to the Cu dopants. Depending on the dispersion, extent, and offset with respect to the parent material, these bands are shown to enhanceSto different degrees. Experimentally, this effect is controllable by the Ti content of the samples, with the addition of Zr/Hf gradually removing the enhancement. At the same time, the mobility remains largely intact, enabling power factors ≥3 mW m−1K−2near room temperature, increasing to ≥5 mW m−1K−2at high temperature. Combined with reduced thermal conductivity due to the Cu interstitials, this enables high averagezT= 0.67–0.72 between 320 and 793 K for XNiCuySn compositions with ≥70% Ti. This work reveals the existence of a new route for electronic performance enhancement in n‐type XNiSn materials that are normally limited by their single carrier pocket. In principle, impurity bands can be applied to other materials and provide a new direction for further development.
more »
« less
Venus Observations at 40 and 90 GHz with CLASS
Abstract Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 ± 2.8 K and 355.6 ± 1.3 K in theQandWfrequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO2-dominant atmospheric model that includes trace amounts of additional absorbers like SO2and H2SO4.
more »
« less
- PAR ID:
- 10362148
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 71
- Size(s):
- Article No. 71
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2absorption bands at different wavelengths is needed to better constrain the SO2abundance. Here we report the detection of SO2spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2of 0.5–25 ppm (1σrange), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.more » « less
-
Abstract The melting temperatures of two different ZrB2ceramics were studied using laser induced melting. ZrB2having a low Hf content, produced by reaction hot pressing, had a melting temperature of 3546 K and a commercial grade ZrB2had a melting temperature of 3553 K. Uncertainty of the temperature measurements was 1% of the absolute temperature, or ~35 K for both materials based upon 2‐sigma and a 95% confidence interval. While these values were consistent with the previously reported ZrB2melting temperature of 3518 K, this study was able to measureTmwith less uncertainty than previous studies (±45 K). Furthermore, this study assessed the effect of Hf content on melting temperature, finding that melting temperature did not change significantly for hafnium contents of 1.75 to 0.01 at%. This study also measured a normal spectral emissivity of 0.34 for ZrB2at 3000 K. The emissivity decreased to 0.28 at the melting temperature, then, stabilized at 0.30 in a liquid phase.more » « less
-
Abstract This work explores the 2D interfacial energy transport between monolayer WSe2and SiO2while considering the thermal nonequilibrium between optical and acoustic phonons caused by photoexcitation. Recent modeling and experimental work have shown substantial temperature differences between optical and acoustic phonons (ΔTOA) in various nanostructures upon laser irradiation. Generally, characterizations of interfacial thermal resistance (R′′tc) at the nanoscale are difficult and depend on Raman‐probed temperature measurements, which only reveal optical phonon temperature information. Here it is shown that ΔTOAfor supported monolayer WSe2can be as high as 48% of the total temperature rise revealed by optothermal Raman methods—a significant proportion that can introduce sizeable error toR′′tcmeasurements if not properly considered. A frequency energy transport state‐resolved Raman technique (FET‐Raman) along with a 3D finite volume modeling of 2D material laser heating is used to extract the true interfacial thermal resistanceR′′tc(determined by acoustic phonon transport). Additionally, a novel ET‐Raman technique is developed to determine the energy coupling factorGbetween optical and acoustic phonons (on the order of 1015W m−3K−1). This work demonstrates the need for special consideration of thermal nonequilibriums during laser–matter interactions at the nanoscale.more » « less
-
Abstract The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4and high-temperature superconductivity in, for example, metal hydrides3,5–7. Here, we present evidence for a demon in Sr2RuO4from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in theβandγbands, the demon is gapless with critical momentumqc = 0.08 reciprocal lattice units and room-temperature velocityv = (1.065 ± 0.12) × 105m s−1that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.more » « less
An official website of the United States government
