skip to main content


Title: Observational Test of the Global Moving Hot Spot Reference Frame
Abstract

The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is determined by starting at present and calculating backward in time, it should be most accurate and reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly worse (p= 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF.

 
more » « less
NSF-PAR ID:
10362211
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
14
ISSN:
0094-8276
Page Range / eLocation ID:
p. 8031-8038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has been proposed that hot spot tracks are caused by moving rigid plates above relatively stationary hot spots. However, the fixity of hot spots remains under debate. Here, we perform 3‐D very high resolution (<25 km laterally) global mantle convection models with realistic convection vigor to investigate the lateral motion of mantle plumes. We find that the lateral motion of plumes beneath the Pacific plate is statistically similar to that beneath the Indo‐Atlantic plates. In the past 80 Ma, the majority (>90%) of plumes move laterally with an average speed of 0–20 mm/year under the no‐net‐rotation reference frame, and there are a small portion (~10–20%) of plumes whose lateral motion is less than 5 mm/year. The geodynamic modeling results are statistically in a good agreement with the hot spot motions in the last 5 Ma estimated from observation‐based kinematic models. Our results suggest a small‐to‐moderate (0–20 mm/year) lateral motion of most plume‐induced hot spots.

     
    more » « less
  2. Abstract

    Uncertainties in trends of hot spot tracks are investigated using a relationship between trend uncertainty and the mapview dimensions of a hot spot track. Prior estimates of Δt(the time span averaged in estimating the trend of a hot spot track), combined with an observed average track width ofσwidth= 33 km, indicate that uncertainties in track trend are larger than estimated before, especially for hot spot tracks on slow‐moving lithosphere. Measured values ofσwidthof different hot spot tracks differ insignificantly from one another. Track widths show no significant differences between oceanic and continental tracks and between tracks of deep plumes and tracks of shallow plumes. We find that motion between groups of hot spots on different plates is slow. Nominal speeds vary from 0 to 6 mm/a with a lower bound of zero and upper bounds of 4 to 13 mm/a for the eight best constrained hot spot groups.

     
    more » « less
  3. Abstract

    The Tonga‐Samoa system provides a unique tectonic context to study how a cold subducting slab interacts with a hot rising mantle plume. Here we present a 3‐D high‐resolution image of the 410‐km mantle discontinuity (the410) using seismic signals excited by deep‐focus earthquakes. The410is found to be ~30 km shallower inside the Tonga slab relative to the ambient mantle and ~20 km deeper further to the northwest under Fiji Islands. The downward deflection of the410under Fiji supports the hypothesis of a plume migration around the northern edge of the Tonga slab from Samoan hot spot to under Fiji due to fast trench rollback. The 50‐km topography difference in the410between the plume and the slab corresponds to a temperature difference of ~500 ± 100 K. The Samoan plume is inferred to be 200 ± 50 K hotter than the ambient mantle and supports a thermal origin for the plume.

     
    more » « less
  4. The Hawaiian-Emperor seamount chain that includes the Hawaiian volcanoes was created by the Hawaiian mantle plume. Although the mantle plume hypothesis predicts an oceanic plateau produced by massive decompression melting during the initiation stage of the Hawaiian hot spot, the fate of this plateau is unclear. We discovered a megameter-scale portion of thickened oceanic crust in the uppermost lower mantle west of the Sea of Okhotsk by stacking seismic waveforms ofSSprecursors. We propose that this thick crust represents a major part of the oceanic plateau that was created by the Hawaiian plume head ~100 million years ago and subducted 20 million to 30 million years ago. Our discovery provides temporal and spatial clues of the early history of the Hawaiian plume for future plate reconstructions.

     
    more » « less
  5. Abstract

    Age-progressive seamount tracks generated by lithospheric motion over a stationary mantle plume have long been used to reconstruct absolute plate motion (APM) models. However, the basis of these models requires the plumes to move significantly slower than the overriding lithosphere. When a plume interacts with a convergent or divergent plate boundary, it is often deflected within the strong local mantle flow fields associated with such regimes. Here, we examined the age progression and geometry of the Samoa hotspot track, focusing on lava flow samples dredged from the deep flanks of seamounts in order to best reconstruct when a given seamount was overlying the mantle plume (i.e., during the shield-building stage). The Samoan seamounts display an apparent local plate velocity of 7.8 cm/yr from 0 to 9 Ma, 11.1 cm/yr from 9 to 14 Ma, and 5.6 cm/yr from 14 to 24 Ma. Current fixed and mobile hotspot Pacific APM models cannot reproduce the geometry of the Samoa seamount track if a long-term fixed hotspot location, currently beneath the active Vailulu’u Seamount, is assumed. Rather, reconstruction of the eruptive locations of the Samoan seamounts using APM models indicates that the surface expression of the plume migrated ~2° northward in the Pliocene. Large-scale mantle flow beneath the Pacific Ocean Basin cannot explain this plume migration. Instead, the best explanation is that toroidal flow fields—generated by westward migration of the Tonga Trench and associated slab rollback—have deflected the conduit northward over the past 2–3 m.y. These observations provide novel constraints on the ways in which plume-trench interactions can alter hotspot track geometries.

     
    more » « less