skip to main content


Title: The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus
Abstract

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.

 
more » « less
NSF-PAR ID:
10362216
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
2
ISSN:
0305-1048
Format(s):
Medium: X Size: p. 847-866
Size(s):
["p. 847-866"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Spo0A transcription factor is activated by phosphorylation in starvingBacillus subtiliscells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother‐cell‐specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1‐3) in the promoter region of the mother cell‐specific lytic transglycosylase genespoIID, which is transcribed by σE‐RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription ofspoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription ofspoIID. The mutated SpoIIID binding site located between the −35 and −10 promoter elements causes increased expression ofspoIIDand reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell‐specificspoIIDexpression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE‐RNAP, for proper sporulation. The conservation of this mechanism across spore‐forming species was discussed.

     
    more » « less
  2. ABSTRACT Biofilm development in Bacillus subtilis is regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate of sinR , which encodes a master repressor for biofilm matrix genes and ultimately triggers biofilm induction. How serine levels change in different growth stages, how B. subtilis regulates intracellular serine levels, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here, we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. The deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared with exponential phase. However, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development in B. subtilis . IMPORTANCE In Bacillus subtilis , biofilm formation is triggered in response to environmental and cellular signals. It was proposed that serine limitation acts as a proxy for nutrient status and triggers biofilm formation at the onset of biofilm entry through a novel signaling mechanism caused by global ribosome pausing on selective serine codons. In this study, we reveal that serine levels decrease at the biofilm entry due to catabolite control and a serine shunt mechanism. We also show that levels of five serine tRNA isoacceptors are differentially decreased in stationary phase compared with exponential phase; three isoacceptors recognizing UCN serine codons are reduced much more than the two recognizing AGC and AGU codons. This finding indicates a possible mechanism for selective ribosome pausing. 
    more » « less
  3. ABSTRACT Many bacteria utilize actin-like proteins to direct peptidoglycan (PG) synthesis. MreB and MreB-like proteins are thought to act as scaffolds, guiding the localization and activity of key PG-synthesizing proteins during cell elongation. Despite their critical role in viability and cell shape maintenance, very little is known about how the activity of MreB family proteins is regulated. Using a Bacillus subtilis misexpression screen, we identified two genes, yodL and yisK , that when misexpressed lead to loss of cell width control and cell lysis. Expression analysis suggested that yodL and yisK are previously uncharacterized Spo0A-regulated genes, and consistent with these observations, a Δ yodL Δ yisK mutant exhibited reduced sporulation efficiency. Suppressors resistant to YodL's killing activity occurred primarily in mreB mutants and resulted in amino acid substitutions at the interface between MreB and the highly conserved morphogenic protein RodZ, whereas suppressors resistant to YisK occurred primarily in mbl mutants and mapped to Mbl's predicted ATP-binding pocket. YodL's shape-altering activity appears to require MreB, as a Δ mreB mutant was resistant to the effects of YodL but not YisK. Similarly, YisK appears to require Mbl, as a Δ mbl mutant was resistant to the cell-widening effects of YisK but not of YodL. Collectively, our results suggest that YodL and YisK likely modulate MreB and Mbl activity, possibly during the early stages of sporulation. IMPORTANCE The peptidoglycan (PG) component of the cell envelope confers structural rigidity to bacteria and protects them from osmotic pressure. MreB and MreB-like proteins are thought to act as scaffolds for PG synthesis and are essential in bacteria exhibiting nonpolar growth. Despite the critical role of MreB-like proteins, we lack mechanistic insight into how their activities are regulated. Here, we describe the discovery of two B. subtilis proteins, YodL and YisK, which modulate MreB and Mbl activities. Our data suggest that YodL specifically targets MreB, whereas YisK targets Mbl. The apparent specificities with which YodL and YisK are able to differentially target MreB and Mbl make them potentially powerful tools for probing the mechanics of cytoskeletal function in bacteria. 
    more » « less
  4. Abstract

    One of the most commonly prescribed antibiotics againstBurkholderiainfections is co‐trimoxazole, a cocktail of trimethoprim and sulfamethoxazole. Trimethoprim elicits an upregulation of themalgene cluster, which encodes proteins involved in synthesis of the cytotoxic polyketide malleilactone; trimethoprim does so by increasing expression of themalRgene, which encodes the activator MalR. We report thatB. thailandensisgrown on trimethoprim exhibited increased virulence againstCaenorhabditis elegans. This enhanced virulence correlated with an increase in expression of themalgene cluster. Notably, inhibition of xanthine dehydrogenase by addition of allopurinol led to similar upregulation ofmalAandmalR, with addition of trimethoprim or allopurinol also resulting in an equivalent intracellular accumulation of xanthine. Xanthine is a ligand for the transcription factor MftR that leads to attenuated DNA binding, and we show using chromatin immunoprecipitation that MftR binds directly tomalR. Our gene expression data suggest thatmalRexpression is repressed by both MftR and by a separate transcription factor, which also responds to a metabolite that accumulates on exposure to trimethoprim. Since allopurinol elicits a similar increase inmalR/malAexpression as trimethoprim, we suggest that impaired purine homeostasis plays a primary role in trimethoprim‐mediated induction ofmalRand in turnmalA.

     
    more » « less
  5. null (Ed.)
    ABSTRACT The stringent response involves accumulation of (p)ppGpp, and it ensures that survival is prioritized. Production of (p)ppGpp requires purine synthesis, and upregulation of an operon that encodes the purine salvage enzyme xanthine dehydrogenase (Xdh) has been observed during stringent response in some bacterial species, where direct binding of ppGpp to a TetR-family transcription factor is responsible for increased xdh gene expression. We show here that the plant pathogen Ralstonia solanacearum has a regulatory system in which the LysR-family transcription factor XanR controls expression of the xan operon; this operon encodes Xdh as well as other enzymes involved in purine salvage, which favor accumulation of xanthine. XanR bound upstream of the xan operon, a binding that was attenuated on addition of either ppGpp or cyclic di-guanosine monophosphate (c-di-GMP). Using a reporter in which enhanced green fluorescent protein (EGFP) is expressed under control of a modified xan promoter, XanR was shown to repress EGFP production. Our data suggest that R. solanacearum features a regulatory mechanism in which expression of genes encoding purine salvage enzymes is controlled by a transcription factor that belongs to a different protein family, yet performs similar regulatory functions. 
    more » « less