Much of our current risk assessment, especially for extreme events and natural disasters, comes from the assumption that the likelihood of future extreme events can be predicted based on the past. However, as global temperatures rise, established climate ranges may no longer be applicable, as historic records for extremes such as heat waves and floods may no longer accurately predict the changing future climate. To assess extremes (present‐day and future) over the contiguous United States, we used NOAA's Climate Extremes Index (CEI), which evaluates extremes in maximum and minimum temperature, extreme one‐day precipitation, days without precipitation, and the Palmer Drought Severity Index (PDSI). The CEI is a spatially sensitive index that uses percentile‐based thresholds rather than absolute values to determine climate “extremeness” and is thus well‐suited to compare extreme climate across regions. We used regional climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) to compare a late 20th century reference period to a mid‐21st century “business as usual” (SRES A2) greenhouse gas‐forcing scenario. Results show a universal increase in extreme hot temperatures across all models, with annual average maximum and minimum temperatures exceeding 90th percentile thresholds consistently across the continental United States. Results for precipitation indicators have greater spatial variability from model to model, but indicate an overall movement towards less frequent but more extreme precipitation days in the future. Due to this difference in response between temperature and precipitation, the mid‐21st century CEI is primarily an index of temperature extremes, with 90th percentile temperatures contributing disproportionately to the overall increase in climate extremeness. We also examine the efficacy of the PDSI in this context in comparison to other drought indices.
Quantitative simulation of precipitation in current climate has been an ongoing challenge for global climate models. Despite serious biases in correctly simulating probabilities of extreme rainfall events, model simulations under global warming scenarios are routinely used to provide estimates of future changes in these probabilities. To minimize the impact of model biases, past literature tends to evaluate fractional (instead of absolute) changes in probabilities of precipitation extremes under the assumption that fractional changes would be more reliable. However, formal tests for the validity of this assumption have been lacking. Here we evaluate two measures that address properties important to the correct simulation of future fractional probability changes of precipitation extremes, and that can be assessed with current climate data. The first measure tests climate model performance in simulating the characteristic shape of the probability of occurrence of daily precipitation extremes and the second measure tests whether the key parameter governing the scaling of this shape is well reproduced across regions and seasons in current climate. Contrary to concerns regarding the reliability of global models for extreme precipitation assessment, our results show most models lying within the current range of observational uncertainty in these measures. Thus, most models in the Coupled Model Intercomparison Project Phase 6 ensemble pass two key tests in current climate that support the usefulness of fractional measures to evaluate future changes in the probability of precipitation extremes.
more » « less- Award ID(s):
- 1936810
- PAR ID:
- 10362220
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 024017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Purpose of Review: Review our current understanding of how precipitation is related to its thermodynamic environment, i.e., the water vapor and temperature in the surroundings, and implications for changes in extremes in a warmer climate. Recent Findings: Multiple research threads have i) sought empirical relationships that govern onset of strong convective precipitation, or that might identify how precipitation extremes scale with changes in temperature; ii) examined how such extremes change with water vapor in global and regional climate models under warming scenarios; iii) identified fundamental processes that set the characteristic shapes of precipitation distributions. Summary: While water vapor increases tend to be governed by the Clausius-Clapeyron relationship to temperature, precipitation extreme changes are more complex and can increase more rapidly, particularly in the tropics. Progress may be aided by bringing separate research threads together and by casting theory in terms of a full explanation of the precipitation probability distribution.more » « less
-
Abstract This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.
-
Accurate prediction of precipitation intensity is crucial for both human and natural systems, especially in a warming climate more prone to extreme precipitation. Yet, climate models fail to accurately predict precipitation intensity, particularly extremes. One missing piece of information in traditional climate model parameterizations is subgrid-scale cloud structure and organization, which affects precipitation intensity and stochasticity at coarse resolution. Here, using global storm-resolving simulations and machine learning, we show that, by implicitly learning subgrid organization, we can accurately predict precipitation variability and stochasticity with a low-dimensional set of latent variables. Using a neural network to parameterize coarse-grained precipitation, we find that the overall behavior of precipitation is reasonably predictable using large-scale quantities only; however, the neural network cannot predict the variability of precipitation ( R 2 ∼ 0.45) and underestimates precipitation extremes. The performance is significantly improved when the network is informed by our organization metric, correctly predicting precipitation extremes and spatial variability ( R 2 ∼ 0.9). The organization metric is implicitly learned by training the algorithm on a high-resolution precipitable water field, encoding the degree of subgrid organization. The organization metric shows large hysteresis, emphasizing the role of memory created by subgrid-scale structures. We demonstrate that this organization metric can be predicted as a simple memory process from information available at the previous time steps. These findings stress the role of organization and memory in accurate prediction of precipitation intensity and extremes and the necessity of parameterizing subgrid-scale convective organization in climate models to better project future changes of water cycle and extremes.more » « less
-
null (Ed.)Abstract. Extreme weather and climate events such as floods, droughts, and heat waves can cause extensive societal damages. While various statistical and climate models have been developed for the purpose of simulating extremes, a consistent definition of extreme events is still lacking. Furthermore, to better assess the performance of the climate models, a variety of spatial forecast verification measures have been developed. However, in most cases, the spatial verification measures that are widely used to compare mean states do not have sufficient theoretical justification to benchmark extreme events. In order to alleviate inconsistencies when defining extreme events within different scientific communities, we propose a new generalized Spatio-Temporal Threshold Clustering method for the identification of extreme event episodes, which uses machine learning techniques to couple existing pattern recognition indices with high or low threshold choices. The method consists of five main steps: (1) construction of essential field quantities; (2) dimension reduction; (3) spatial domain mapping; (4) time series clustering; and (5) threshold selection. We develop and apply this method using a gridded daily precipitation dataset derived from rain gauge stations over the contiguous United States. We observe changes in the distribution of conditional frequency of extreme precipitation from large-scale well-connected spatial patterns to smaller-scale more isolated rainfall clusters, possibly leading to more localized droughts and heat waves, especially during the summer months. The proposed method automates the threshold selection process through a clustering algorithm and can be directly applicable in conjunction with modeling and spatial forecast verification of extremes. Additionally, it allows for the identification of synoptic-scale spatial patterns that can be directly traced to the individual extreme episodes, and it offers users the flexibility to select an extreme threshold that is linked to the desired geometrical properties. The approach can be applied to broad scientific disciplines.more » « less