skip to main content


Title: Decoupling of static and dynamic criticality in a driven Mott insulator
Abstract

Strongly driven antiferromagnetic Mott insulators have the potential to exhibit exotic transient phenomena that are forbidden in thermal equilibrium. However, such far-from-equilibrium regimes, where conventional time-dependent Ginzburg-Landau descriptions fail, are experimentally challenging to prepare and to probe especially in solid state systems. Here we use a combination of time-resolved second harmonic optical polarimetry and coherent magnon spectroscopy to interrogaten-type photo-doping induced ultrafast magnetic order parameter dynamics in the antiferromagnetic Mott insulator Sr2IrO4. We find signatures of an unusual far-from-equilibrium critical regime in which the divergences of the magnetic correlation length and relaxation time are decoupled. This violation of conventional thermal critical behavior arises from the interplay of photo-doping and non-thermal magnon population induced demagnetization effects. Our findings, embodied in a non-equilibrium phase diagram, provide a blueprint for engineering the out-of-equilibrium properties of quantum matter, with potential applications to terahertz spintronics technologies.

 
more » « less
NSF-PAR ID:
10362247
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Search for novel electronically ordered states of matter emerging near quantum phase transitions is an intriguing frontier of condensed matter physics. In ruthenates, the interplay between Coulomb correlations among the 4delectronic states and their spin-orbit interactions, lead to complex forms of electronic phenomena. Here we investigate the double layered Sr3(Ru1−xMnx)2O7and its doping-induced quantum phase transition from a metal to an antiferromagnetic Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope, we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap at the Fermi energy that develops with doping to form a weak Mott insulating state. Near the quantum phase transition, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings bear a resemblance to the universal charge order in the pseudogap phase of cuprates and demonstrate the ubiquity of charge order that emanates from doped Mott insulators.

     
    more » « less
  2. Abstract

    The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3are epitaxially grown on SrTiO3single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.

     
    more » « less
  3.  
    more » « less
  4. Abstract

    Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their deposition processes to produce RF superconductors that yield nΩ surface resistances is a key metric for the wider adoption of SRF technology. Here, ZrNb(CO) RF superconducting films with high critical temperatures (Tc) achieved for the first time under ambient pressure are reported. The attainment of aTcnear the theoretical limit for this material without applied pressure is promising for its use in practical applications. A range ofTc, likely arising from Zr doping variation, may allow a tunable superconducting coherence length that lowers the sensitivity to material defects when an ultra‐low surface resistance is required. The ZrNb(CO) films are synthesized using a low‐temperature (100 – 200 °C) electrochemical recipe combined with thermal annealing. The phase transformation as a function of annealing temperature and time is optimized by the evaporated Zr‐Nb diffusion couples. Through phase control, one avoids hexagonal Zr phases that are equilibrium‐stable but degradeTc. X‐ray and electron diffraction combined with photoelectron spectroscopy reveal a system containing cubic β‐ZrNb mixed with rocksalt NbC and low‐dielectric‐loss ZrO2. Proof‐of‐concept RF performance of ZrNb(CO) on an SRF sample test system is demonstrated. BCS resistance trends lower than reference Nb, while quench fields occur at approximately 35 mT. The results demonstrate the potential of ZrNb(CO) thin films for particle accelerators and other SRF applications.

     
    more » « less
  5. We report on the results of finite difference time domain (FDTD) simulations of the terahertz response of a split ring resonator (SRR) metamaterial coupled to a hypothetical antiferromagnetic material (AFM) characterized by a magnon resonance. We find a hybridization of the SRR’s local magnetic field and the magnon, which manifests as an avoided crossing in the far-field transmission spectrum. We show that the strong light-matter coupling can be modelled via a two coupled oscillator model. We further evaluate the SRR-AFM coupling strength by varying the physical separation with a dielectric spacer between them. We find strong coupling for spacers thinner than 3μm, suggesting far-field transmission measurements of metamaterial near-fields to be a versatile platform to investigate magnetic excitations of quantum materials.

     
    more » « less