skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Warm Phase of AMV Damps ENSO Through Weakened Thermocline Feedback
Abstract

Interactions between ocean basins affect El Niño–Southern Oscillation (ENSO), altering its impacts on society. Here, we explore the effect of Atlantic Multidecadal Variability (AMV) on ENSO behavior using idealized experiments performed with the NCAR‐CESM1 model. Comparing warm (AMV+) to cold (AMV−) AMV conditions, we find that ENSO sea surface temperature (SST) anomalies are reduced by ∼10% and ENSO precipitation anomalies are shifted to the west during El Niño and east during La Niña. Using the Bjerknes stability index, we attribute the reduction in ENSO variability to a weakened thermocline feedback in boreal autumn. In AMV+, the Walker circulation and trade winds strengthen over the tropical Pacific, increasing the background zonal SST gradient. The background changes shift ENSO anomalies westwards, with wind stress anomalies more confined to the west. We suggest the changes in ENSO‐wind stress decrease the strength of the thermocline feedback in the east, eventually reducing ENSO growth rate.

 
more » « less
NSF-PAR ID:
10362257
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    El Niño–Southern Oscillation (ENSO) variability is accompanied by out‐of‐phase anomalies in the top‐of‐atmosphere tropical radiation budget, with anomalous downward flux (i.e., net radiative heating) before El Niño and anomalous upward flux thereafter (and vice versa for La Niña). Here, we show that these radiative anomalies result mainly from a sea surface temperature (SST) “pattern effect,” mediated by changes in tropical‐mean tropospheric stability. These stability changes are caused by SST anomalies migrating from climatologically cool to warm regions over the ENSO cycle. Our results are suggestive of a two‐way coupling between SST variability and radiation, where ENSO‐induced radiative changes may in turn feed back onto SST during ENSO.

     
    more » « less
  2. McManus, J (Ed.)
    The El Niño Southern Oscillation (ENSO) is a climate variation that occurs in the Eastern Equatorial Pacific (EEP) ocean, which influences the position of the thermocline today. The ENSO cycle is split into three states: a normal state, an El Niño state, and a La Niña state. Each one is marked by different sea surface temperatures (SST). Under normal conditions, the trade winds push warm water westward, away from the coast of South America. This allows cool water to upwell the east and creates a zonal SST gradient. Every few years, the trade winds slow, preventing the flow of warm water. This increases the SST in the EEP and produces an El Niño. The winds can also strengthen and move more warm water westward. The heightened zonal SST gradient forms a La Niña. This project investigates past conditions in the EEP by reconstructing the mean position of the thermocline: a layer in the ocean where temperature rapidly changes with depth. In the modern ocean, the thermocline is shallower in the east, where SSTs are cool, and deeper in the west, where SSTs are warm. The more uniform SST gradient during an El Niño event flattens the zonal slope thermocline; the stronger gradient during a La Niña steepens it. The temperature proxy used to determine past thermocline positions is the isotopic composition of oxygen in foraminifera (δ18O). Foraminiferal δ18O increases with depth in the water column, as temperature decreases and density increases. Two species with contrasting depth-habitats were analyzed; Globigerinoides ruber, which lives near the surface above the thermocline, and Neogloboquadrina dutertrei, which lives in the lower thermocline. When the thermocline shifts, it changes their difference in δ18O. A smaller difference indicates a deeper thermocline and an El Niño-like state; a greater difference indicates a shallower thermocline and a La Niña-like state. The forams were collected from two deep-sea sediment cores. The first was Ocean Drilling Program (ODP) Leg 202 Site 1239 (0.67˚S, 82.08˚W, 1414 m) drilled in the east near the coast of Ecuador. The second was ODP Leg 138 Site 849 (0.10˚S, 110.31˚W, 3858 m) toward the west. Rather than identifying specific ENSO events, this method provides insight into the position of the thermocline and therefore the mean state of the EEP during the Holocene and last glacial period. 
    more » « less
  3. Abstract Low clouds frequent the subtropical northeastern Pacific Ocean (NEP) and interact with the local sea surface temperature (SST) to form positive feedback. Wind fluctuations drive SST variability through wind–evaporation–SST (WES) feedback, and surface evaporation also acts to damp SST. This study investigates the relative contributions of these feedbacks to NEP SST variability. Over the summer NEP, the low cloud–SST feedback is so large that it exceeds the evaporative damping and amplifies summertime SST variations. The WES feedback causes the locally enhanced SST variability to propagate southwestward from the NEP low cloud deck, modulating El Niño–Southern Oscillation (ENSO) occurrence upon reaching the equator. As a result, a second-year El Niño tends to occur when there are significant warm SST anomalies over the subtropical NEP in summer following an antecedent El Niño event and a second-year La Niña tends to occur when there are significant cold SST anomalies over the subtropical NEP in summer following an antecedent La Niña event The mediating role of the NEP low cloud–SST feedback is confirmed in a cloud-locking experiment with the Community Earth System Model, version 1 (CESM1). When the cloud–ocean coupling is disabled, SST variability over the NEP weakens and the modulating effect on ENSO vanishes. The nonlocal effect of the NEP low cloud–SST feedback on ENSO has important implications for climate prediction. 
    more » « less
  4. Abstract

    The temperature of the subsurface water entrained into the surface mixed layer plays a key role in controlling the sea surface temperature (SST) and its interannual variability in the equatorial Pacific. In this paper, we combine a hyperbolic tangent function bounded by the warm pool SST and centered at the thermocline depth with a variable sharpness parameter to describe the time‐space evolutions of the subsurface temperature. Under simple approximations of the sharpness parameter, this concise expression becomes remarkably efficient in capturing the observed and climate‐model simulated subsurface temperature variability in terms of anomalies of the thermocline depth and SST of the El Niño‐Southern Oscillation (ENSO) phenomenon. The formulations for the subsurface temperature and thermocline sharpness developed in this work should be useful tools for evaluating and understanding the role of the thermocline feedback in ENSO behaviors in both theoretical and comprehensive climate models.

     
    more » « less
  5. Abstract

    Atlantic Niños dominate the equatorial Atlantic variability during boreal summer (June–August). The coupled ocean‐atmosphere processes associated with Atlantic Niños have been extensively documented. However, the role of atmospheric convectively coupled Kelvin waves (CCKWs), which are uncorrelated to those previously identified processes, in triggering Atlantic Niños has been unclear. Here we identify CCKWs using Wheeler‐Kiladis filtering based on 10°S–10°N averaged daily outgoing longwave radiation. CCKWs propagate eastward from South America and induce surface zonal wind anomalies over the equatorial Atlantic Ocean. Strong anomalous CCKWs during spring (March–May) and their associated surface westerly wind anomalies can trigger downwelling oceanic Kelvin waves that change the east–west slope of the thermocline, consequently leading to Atlantic Niño. A causal effect network reveals that interannual sea surface temperature (SST) anomalies in the Atlantic Niño Index area and CCKWs, both in spring, are uncorrelated, but both appear to influence SST anomalies over the Atlantic Niño Index area in summer. The CCKWs are also uncorrelated to other coupled ocean‐atmosphere sources, such as El Niño–Southern Oscillation and Atlantic Meridional Mode. Among a total of 15 Atlantic Niño/Niña events identified for the period of 1980–2017, two‐thirds of the events are linked to CCKWs. In particular, three Atlantic Niña events (1982, 1994, and 2005) are mainly triggered by CCKWs, under unfavorable SST preconditions. Thus, CCKWs in spring, due to atmospheric internal variability, provide another mechanism for triggering Atlantic Niños and probably weaken their predictability.

     
    more » « less