skip to main content


Title: Pilot-scale comparison of biological nutrient removal (BNR) using intermittent and continuous ammonia-based low dissolved oxygen aeration control systems
Abstract

Sensor driven aeration control strategies have recently been developed as a means to efficiently carry out biological nutrient removal (BNR) and reduce aeration costs in wastewater treatment plants. Under load-based aeration control, often implemented as ammonia-based aeration control (ABAC), airflow is regulated to meet desired effluent standards without specifically setting dissolved oxygen (DO) targets. Another approach to reduce aeration requirements is to constantly maintain low DO conditions and allow the microbial community to adapt to the low-DO environment. In this study, we compared the performance of two pilot-scale BNR treatment trains that simultaneously used ABAC and low-DO operation to evaluate the combination of these two strategies. One pilot plant was operated with continuous ABAC while the other one used intermittent ABAC. Both processes achieved greater than 90% total Kjehldal nitrogen (TKN) removal, 60% total nitrogen removal, and nearly 90% total phosphorus removal. Increasing the solids retention time (SRT) during the period of cold (∼12 °C) water temperatures helped maintain ammonia removal performance under low-DO conditions. However, both processes experienced poor solids settling characteristics during winter. While settling was recovered under warmer temperatures, improving settling quality remains a challenge under low-DO operation.

 
more » « less
Award ID(s):
1803055
NSF-PAR ID:
10362290
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.2166
Date Published:
Journal Name:
Water Science and Technology
Volume:
85
Issue:
2
ISSN:
0273-1223
Page Range / eLocation ID:
p. 578-590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practitioner points

    Tight sensor‐mediated aeration control is need for better PN/A.

    Low DO intermittent aeration with minimum ammonium residual results in a stable N removal.

    Low DO aeration results in a stable NOB suppression.

    Using sensor‐mediated aeration control in a granular sludge reactor reduces aeration cost.

     
    more » « less
  2. ABSTRACT

    The algal–bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal–bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.

     
    more » « less
  3. A Novel Community Engaged System Thinking Approach to Controlling Nutrient Pollution in the Belize Cayes Nutrient pollution (anthropogenic discharge of nitrogen and phosphate) is a major concern in many parts of the world. Excess nutrient discharge into nutrient limited waters can cause toxic algal blooms that lead to hypoxic zones, fish die-offs, and overgrowth on reefs. This can lead to coral reefs being more vulnerable to global warming and ocean acidification. For coastal communities that depend of fishing and tourism for their livelihood, and for reefs to protect coastlines, these effects can be devastating. A major source of nutrient input into the aquatic environment is poorly treated wastewater from Onsite Wastewater Treatment Systems (OWTS). When properly sited, built, and maintained conventional OWTS are great for removing fats, grease, biological oxygen demand (BOD), and total suspended solids (TSS), but they are rarely designed for nutrient removal and commonly have high nutrient levels in their effluent. This study investigates the factors that influence the performance of OWTS, the Caribbean region’s most common type of treatment technology, in the Belizean Cayes where salt water flushing is common. Using mass-balance-based models for existing and proposed OWTS to predict the system’s performance under various conditions, along with OWTS’ owner, maintainer, and user input, a novel community engaged system thinking approach to controlling nutrient pollution will be developed. Key model performance metrics are concentrations of nitrogen species, BOD, and TSS in the effluent. To demonstrate the model’s utility, a sensitivity analysis was performed for case studies in Belize, estimating the impact on nutrient removal efficiency when changes are made to variables such as number of daily users, idle periods, tank number and volume, oxygen concentration and recirculation. For the systems considered here, strategies such as aeration, increased biodigester tank size, addition of aerobic and anoxic biodigesters, recirculation, addition of a carbon source, ion exchange media is predicted to decrease the effluent nitrogen concentration, and integration of vegetation for nutrient uptake both on land and in the nearshore environment. In a previous case, the addition of an aerator was predicted to decrease the effluent ammonium concentration by 13%, whereas increasing the biodigester tank size would only decrease the effluent ammonium concentration by ~7%. Model results are shared with system manufacturers and operators to prioritize possible modifications, thereby optimizing the use of finite resources, namely time and money, for costly trial-and-error improvement efforts. 
    more » « less
  4. Twenty-five United Nations member states in the wider Caribbean region ratified the Cartagena Convention, which covers the marine environment of the Gulf of Mexico, the Caribbean Sea and some parts of the Atlantic Ocean. The Land-Based Sources and Activities protocol (LBS Protocol) of that convention addresses nutrient pollution from sewage discharges, agricultural runoff and other sources. Unfortunately, most Caribbean people use conventional onsite wastewater treatment systems (OWTs), especially septic systems. These systems fail to remove nitrogen effectively, posing a challenge for near shore environments. Passive biological nitrogen removal (BNR) processes have been developed for OWTs that rely on simple packed bed bioreactors, with little energy or chemical inputs and low operations and maintenance (O&M) requirements. This paper provides a case study from Florida on the partnerships and pathways for research to develop an innovative technology, Hybrid Adsorption and Biological Treatment System (HABiTS), for nitrogen reduction in OWTs. HABiTS combine ion exchange materials and BNR to remove nitrogen from septic tank effluent and buffer transient loadings. HABiTS, employs natural zeolite material (e.g. clinoptilolite) and expanded clay in the first stage to achieve both ammonium ion exchange and nitrification. The second stage of HABiTS utilizes tire chips, elemental sulphur pellets and oyster shells for adsorption of nitrate as well as sulphur oxidizing denitrification. Under transient load applications, the nitrogen in excess of the biodegradation capacity during high loading events was partially retained within the ion exchange and adsorption materials and readily available later for the microorganisms during lower loading events. Results from a bench scale bioreactor study with marine wastewater, which is relevant to where seawater is used for toilet flushing, are also presented. Pilot scale tests on the OWT of an engaged stakeholder dependent on the marine environment, would contribute to broader discussions for paradigm shifts for nutrient removal from wastewater. 
    more » « less
  5. Abstract Practitioner Points

    Comammox identifying as main nitrifier in the B stage.

    Comammox enriched sludge from B stage successfully bio‐augmented the East side of A stage up to threefold.

    Bioaugmentation of comammox in the West side of A stage was potentially inhibited by the gravity thickened overflow.

    Sludge returned from B stage to A stage can improve nitrification with a very minor retrofits and short startup times.

     
    more » « less