skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization and Representativeness of Atmospheric Chemical Sampling by Hovering Unmanned Aerial Vehicles Over Tropical Forests
Abstract Atmospheric chemical species play critical roles in ecosystem functioning and climate, but spatially resolving near‐surface concentrations has been challenging. In this regard, hovering unmanned aerial vehicles (UAVs) represent an emerging technology. The study herein provides guidance for optimized atmospheric sampling by hovering copter‐type UAVs. Large‐eddy simulations are conducted for species having chemical lifetimes ranging from reactive (i.e., 102s) to long‐lived (i.e., 108s). The case study of fair‐weather conditions over an equatorial tropical forest is used because of previous UAV deployments in this region. A framework is developed of influence length and horizontal shift of upwind surface emissions. The framework quantifies the length scale of the contribution of upwind forest emissions to species concentrations sampled by the downwind hovering UAV. Main findings include the following: (1) sampling within an altitude that is no more than 200 m above the canopy is recommended for both high‐ and intermediate‐reactivity species because of the strong decrease in species concentration even in a highly turbulent atmosphere; (2) sampling durations of at least 5 and 10 min are recommended for intermediate‐ and high‐reactivity species, respectively, because of the effects of atmospheric turbulence; and (3) in the case of heterogeneity of emissions across the underlying landscape, maximum recommended altitudes are presented for horizontal sampling strategies that can resolve the variability in the landscape emissions. The coupled effects of emission rate, wind speed, species lifetime, turbulence, and UAV sampling duration on influence length must all be considered for optimized and representative sampling over forests.  more » « less
Award ID(s):
1829025
PAR ID:
10362449
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
8
Issue:
4
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models. 
    more » « less
  2. null (Ed.)
    Semivolatile oxygenated organic compounds (SV-OVOCs) are important atmospheric species, in particular for the production and chemistry of atmospheric particulate matter and related impacts on air quality and climate. In this study, SV-OVOCs were collected in the horizontal plane of the roughness layer over the tropical forest in the central Amazon during the wet season of 2018. A sampler mounted to a copter-type, hovering unmanned aerial vehicle was used. Underlying the collection region, a plateau forest transitioned into a slope forest across several hundred meters. The concentrations of pinonic and pinic acids, which are monoterpene oxidation products, had no statistical difference over the two forests. By comparison, across the study period, differences in the concentration of 2-methyltetrols, which are products of isoprene oxidation, ranged from −70% to +480% over the two forests. The chemical lifetime of 2-methyltetrols in the atmosphere is sufficiently long that heterogeneity in the isoprene emission rate from the two forests followed by atmospheric oxidation does not explain the concentration heterogeneity of 2-methyltetrols. Standing waves and local meteorology also cannot account for the heterogeneity. Of the possibilities considered, the most plausible explanation is the direct emission from the forest of 2-methyltetrols produced through biological processes within the plants. Under this explanation, the rate of direct SV-OVOC emissions should be modulated by forest type and related environmental stressors. Direct emissions of SV-OVOCs should be more broadly considered for constraining and improving models of atmospheric composition, transport, and chemistry over tropical forests. 
    more » « less
  3. Abstract. Emissions from natural sources are driven by various external stimuli such as sunlight, temperature, and soil moisture. Once biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere, they rapidly react with atmospheric oxidants, which has significant impacts on ozone and aerosol budgets. However, diurnal, seasonal, and interannual variability in these species are poorly captured in emissions models due to a lack of long-term, chemically speciated measurements. Therefore, increasing the monitoring of these emissions will improve the modeling of ozone and secondary organic aerosol concentrations. Using 2 years of speciated hourly BVOC data collected at the Virginia Forest Research Lab (VFRL) in Fluvanna County, Virginia, USA, we examine how minor changes in the composition of monoterpenes between seasons are found to have profound impacts on ozone and OH reactivity. The concentrations of a range of BVOCs in the summer were found to have two different diurnal profiles, which, we demonstrate, appear to be driven by light-dependent versus light-independent emissions. Factor analysis was used to separate the two observed diurnal profiles and determine the contribution from each emission type. Highly reactive BVOCs were found to have a large influence on atmospheric reactivity in the summer, particularly during the daytime. These findings reveal the need to monitor species with high atmospheric reactivity, even though they have low concentrations, to more accurately capture their emission trends in models. 
    more » « less
  4. Abstract We use observations from dual high‐resolution mass spectrometers to characterize ecosystem‐atmosphere fluxes of reactive carbon across an extensive range of volatile organic compounds (VOCs) and test how well that exchange is represented in current chemical transport models. Measurements combined proton‐transfer reaction mass spectrometry (PTRMS) and iodide chemical ionization mass spectrometry (ICIMS) over a Colorado pine forest; together, these techniques have been shown to capture the majority of ambient VOC abundance and reactivity. Total VOC mass and associated OH reactivity fluxes were dominated by emissions of 2‐methyl‐3‐buten‐2‐ol, monoterpenes, and small oxygenated VOCs, with a small number of compounds detected by PTRMS driving the majority of both net and upward exchanges. Most of these dominant species are explicitly included in chemical models, and we find here that GEOS‐Chem accurately simulates the net and upward VOC mass and OH reactivity fluxes under clear sky conditions. However, large upward terpene fluxes occurred during sustained rainfall, and these are not captured by the model. Far more species contributed to the downward fluxes than are explicitly modeled, leading to a major underestimation of this key sink of atmospheric reactive carbon. This model bias mainly reflects missing and underestimated concentrations of depositing species, though inaccurate deposition velocities also contribute. The deposition underestimate is particularly large for assumed isoprene oxidation products, organic acids, and nitrates—species that are primarily detected by ICIMS. Net ecosystem‐atmosphere fluxes of ozone reactivity were dominated by sesquiterpenes and monoterpenes, highlighting the importance of these species for predicting near‐surface ozone, oxidants, and aerosols. 
    more » « less
  5. Abstract. The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2)radicals play important roles in atmospheric chemistry. In the presence ofnitrogen oxides (NOx), reactions between OH and volatile organiccompounds (VOCs) can initiate a radical propagation cycle that leads to theproduction of ozone and secondary organic aerosols. Previous measurements ofthese radicals under low-NOx conditions in forested environmentscharacterized by emissions of biogenic VOCs, including isoprene andmonoterpenes, have shown discrepancies with modeled concentrations. During the summer of 2016, OH, HO2, and RO2 radical concentrationswere measured as part of the Program for Research on Oxidants:Photochemistry, Emissions, and Transport – Atmospheric Measurements ofOxidants in Summer (PROPHET-AMOS) campaign in a midlatitude deciduousbroadleaf forest. Measurements of OH and HO2 were made by laser-inducedfluorescence–fluorescence assay by gas expansion (LIF-FAGE) techniques,and total peroxy radical (XO2) mixing ratios were measured by the Ethane CHemical AMPlifier (ECHAMP) instrument. Supporting measurements ofphotolysis frequencies, VOCs, NOx, O3, and meteorological datawere used to constrain a zero-dimensional box model utilizing either theRegional Atmospheric Chemical Mechanism (RACM2) or the Master ChemicalMechanism (MCM). Model simulations tested the influence of HOxregeneration reactions within the isoprene oxidation scheme from the LeuvenIsoprene Mechanism (LIM1). On average, the LIM1 models overestimated daytimemaximum measurements by approximately 40 % for OH, 65 % for HO2,and more than a factor of 2 for XO2. Modeled XO2 mixing ratioswere also significantly higher than measured at night. Addition of RO2 + RO2 accretion reactions for terpene-derived RO2 radicals tothe model can partially explain the discrepancy between measurements andmodeled peroxy radical concentrations at night but cannot explain thedaytime discrepancies when OH reactivity is dominated by isoprene. Themodels also overestimated measured concentrations of isoprene-derivedhydroxyhydroperoxides (ISOPOOH) by a factor of 10 during the daytime,consistent with the model overestimation of peroxy radical concentrations.Constraining the model to the measured concentration of peroxy radicalsimproves the agreement with the measured ISOPOOH concentrations, suggestingthat the measured radical concentrations are more consistent with themeasured ISOPOOH concentrations. These results suggest that the models maybe missing an important daytime radical sink and could be overestimating therate of ozone and secondary product formation in this forest. 
    more » « less