skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Now You See It, Now You Don’t: Star Formation Truncation Precedes the Loss of Molecular Gas by ∼100 Myr in Massive Poststarburst Galaxies at z ∼ 0.6
Abstract We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu L ar momentum, and Evolution ( SQuIGG L E ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, with M H 2 10 9 M. Given their high stellar masses, this mass limit corresponds to an average gas fraction of f H 2 M H 2 / M * 7 % or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the SQuIGG L E galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.  more » « less
Award ID(s):
1907697 1908137 1907723
PAR ID:
10362450
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
925
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 153
Size(s):
Article No. 153
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio 12 / 13 I [ 12 CO ( J = 1 0 ) ] / I [ 13 CO ( J = 1 0 ) ] and the properties of the stars and ionized gas. Higher 12 / 13 values are found in interacting galaxies compared to those in noninteracting galaxies. The global 12 / 13 slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged 12 / 13 profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of 12 / 13 are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged 12 / 13 increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged 12 / 13 does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, 12 / 13 is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on 12 / 13 , which further complicates the interpretations of 12 / 13 variations. 
    more » « less
  2. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less
  3. Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are 9.3 5.4 + 4.6 and 4.2 2.0 + 1.9 M pc 2 ( K km s 1 ) 1 , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( U ¯ ). Among them, U ¯ , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, U ¯ , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relations α CO ( 2 1 ) Σ 0.5 and α CO ( 1 0 ) Σ 0.2 . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. 
    more » « less
  4. Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( x ¯ H I 10 3 ) or close to unity ( x ¯ H I 1 ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on x ¯ H I atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of x ¯ H I ( z = 6.3 ) < 0.79 ± 0.04 (1σ), x ¯ H I ( z = 6.5 ) < 0.87 ± 0.03 (1σ), and x ¯ H I ( z = 6.7 ) < 0.94 0.09 + 0.06 (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
    more » « less
  5. Abstract We compare 500 pc scale, resolved observations of ionized and molecular gas for thez∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux ( Σ ̇ out ) and star formation rate surface density (ΣSFR), Σ ̇ out Σ SFR 1.06 ± 0.10 , and a strong correlation between Σ ̇ out and the gas depletion time, such that Σ ̇ out t dep 1.1 ± 0.06 . Moreover, we find these outflows are so-calledbreakoutoutflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies. 
    more » « less