We present the stability analysis of two regions, OMC-3 and OMC-4, in the massive and long molecular cloud complex of Orion A. We obtained 214 $\mu$m HAWC + /SOFIA polarization data, and we make use of archival data for the column density and C18O (1–0) emission line. We find clear depolarization in both observed regions and that the polarization fraction is anticorrelated with the column density and the polarization-angle dispersion function. We find that the filamentary cloud and dense clumps in OMC-3 are magnetically supercritical and strongly subvirial. This region should be in the gravitational collapse phase and is consistent with many young stellar objects (YSOs) forming in the region. Our histogram of relative orientation (HRO) analysis shows that the magnetic field is dynamically sub-dominant in the dense gas structures of OMC-3. We present the first polarization map of OMC-4. We find that the observed region is generally magnetically subcritical except for an elongated dense core, which could be a result of projection effect of a filamentary structure aligned close to the line of sight. The relative large velocity dispersion and the unusual positive shape parameters at high column densities in the HROs analysis suggest that our viewing angle may be closemore »
Optical and infrared polarization mapping and recent Planck observations of the filametary cloud L1495 in Taurus show that the large-scale magnetic field is approximately perpendicular to the long axis of the cloud. We use the HAWC + polarimeter on SOFIA to probe the complex magnetic field in the B211 part of the cloud. Our results reveal a dispersion of polarization angles of 36°, about five times that measured on a larger scale by Planck. Applying the Davis–Chandrasekhar–Fermi (DCF) method with velocity information obtained from Institut de Radioastronomie Millimétrique 30 m C18O(1-0) observations, we find two distinct sub-regions with magnetic field strengths differing by more than a factor 3. The quieter sub-region is magnetically critical and sub-Alfv$\acute{\rm e}$nic; the field is comparable to the average field measured in molecular clumps based on Zeeman observations. The more chaotic, super-Alfv$\acute{\rm e}$nic sub-region shows at least three velocity components, indicating interaction among multiple substructures. Its field is much less than the average Zeeman field in molecular clumps, suggesting that the DCF value of the field there may be an underestimate. Numerical simulation of filamentary cloud formation shows that filamentary substructures can strongly perturb the magnetic field. DCF and true field values in the simulation are more »
- Publication Date:
- NSF-PAR ID:
- 10362456
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 510
- Issue:
- 4
- Page Range or eLocation-ID:
- p. 6085-6109
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Context. The role of large-scale magnetic fields in the evolution of star-forming regions remains elusive. Its investigation requires the observational characterization of well-constrained molecular clouds. The Monoceros OB 1 molecular cloud is a large complex containing several structures that have been shown to be engaged in an active interaction and to have a rich star formation history. However, the magnetic fields in this region have only been studied on small scales. Aims. We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB 1 east molecular cloud. Methods. We combined observations of dust polarized emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculated the strength of the plane-of-sky magnetic field using a modified Chandrasekhar-Fermi method and estimated the mass-over-flux ratios in different regions of the cloud. We used the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. Results. The molecular complex shows an ordered large-scale plane-of-sky magnetic field structure. In the northern part, it is mostly orientated along the filamentary structures, while the southern part shows at leastmore »
-
Context. LDN 1157 is one of several clouds that are situated in the cloud complex LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, that resides deep inside the cloud. Aims. The main goals of this work are (a) mapping the intercloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, outflow direction, and core magnetic field (CMF) geometry inferred from the millimeter- and submillimeter polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical ( R -band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry. We made spectroscopic observations of the entire cloud in the 12 CO, C 18 O, and N 2 H + ( J = 1–0) lines to investigate its kinematic structure. Results. We obtained a distance of 340 ± 3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ~1.2 pc in length (tracedmore »
-
ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the backgroundmore »
-
Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based onmore »