We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2, bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above λ > 20 and within 0.1 <$z$ <0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity–temperature (LX –TX ), luminosity–richness (LX –λ), and temperature–richness (TX –λ) scaling relations. We find that the fitted forms of the LX –TX relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scalingmore »
The XXL Survey is the largest homogeneous survey carried out with XMM-Newton. Covering an area of 50 deg2, the survey contains several hundred galaxy clusters out to a redshift of ≈2, above an X-ray flux limit of ∼6 × 10−15 er g cm−2 s−1. The GAMA spectroscopic survey of ∼300 000 galaxies covers ≈286 deg2, down to an r-band magnitude of r < 19.8 mag. The region of overlap of these two surveys (covering 14.6 deg2) represents an ideal opportunity to study clusters selected via two independent selection criteria. Generating two independently selected samples of clusters, one drawn from XXL (spanning a redshift range 0.05 ≤ z ≤ 0.3) and another from GAMA (0.05 ≤ z ≤ 0.2), both spanning 0.2 ≲ M500 ≲ 5 × 1014 M⊙, we investigate the relationship between X-ray luminosity and velocity dispersion (LX − σv relation). Comparing the LX − σv relation between the X-ray selected and optically selected samples, when not accounting for the X-ray selection, we find that the scatter of the X-ray selected sample is 2.7 times higher than the optically selected sample (at the 3.7σ level). Accounting for the X-ray selection to model the LX − σv relation, we find that the difference in the scatter increases (with the X-ray selected more »
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10362476
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 1227-1246
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We present our determination of the baryon budget for an X-ray-selected XXL sample of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass (M500 ∼ 1013–1015 M⊙) and the redshift range 0 ≲ z ≲ 1. Our joint analysis is based on the combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic covariance between cluster properties, selection effect, weak-lensing mass calibration, and observational error covariance matrix. The mass-dependent slope of the gas mass–total mass (M500) relation is found to be $1.29_{-0.10}^{+0.16}$, which is steeper than the self-similar prediction of unity, whereas the slope of the stellar mass–total mass relation is shallower than unity; $0.85_{-0.09}^{+0.12}$. The BCG stellar mass weakly depends on cluster mass with a slope of $0.49_{-0.10}^{+0.11}$. The baryon, gas mass, and stellar mass fractions as a function of M500 agree with the results from numerical simulations and previous observations. We successfully constrain the full intrinsicmore »
-
ABSTRACT We present a catalogue of 4499 groups and clusters of galaxies from the first data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local Universe Survey (S-PLUS). These groups and clusters are distributed over 273 deg2 in the Stripe 82 region. They are found using the PzWav algorithm, which identifies peaks in galaxy density maps that have been smoothed by a cluster scale difference-of-Gaussians kernel to isolate clusters and groups. Using a simulation-based mock catalogue, we estimate the purity and completeness of cluster detections: at S/N > 3.3, we define a catalogue that is 80 per cent pure and complete in the redshift range 0.1 < z < 0.4, for clusters with M200 > 1014 M⊙. We also assessed the accuracy of the catalogue in terms of central positions and redshifts, finding scatter of σR = 12 kpc and σz = 8.8 × 10−3, respectively. Moreover, less than 1 per cent of the sample suffers from fragmentation or overmerging. The S-PLUS cluster catalogue recovers ∼80 per cent of all known X-ray and Sunyaev-Zel’dovich selected clusters in this field. This fraction is very close to the estimated completeness, thus validating the mock data analysis and paving an efficient way to find new groups and clusters of galaxies using data from themore »
-
ABSTRACT We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) active galactic nuclei (AGN) in the range z ≈ 0–3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore the mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median SFR, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion time scalesmore »
-
ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope ofmore »