skip to main content

Title: Numerical simulations of the random angular momentum in convection: Implications for supergiant collapse to form black holes

During the core collapse of massive stars that do not undergo a canonical energetic explosion, some of the hydrogen envelope of a red supergiant (RSG) progenitor may infall on to the newborn black hole (BH). Within the athena++ framework, we perform 3D, hydrodynamical simulations of idealized models of supergiant convection and collapse in order to assess whether the infall of the convective envelope can give rise to rotationally supported material, even if the star has zero angular momentum overall. Our dimension-less, polytropic models are applicable to the optically thick hydrogen envelope of non-rotating RSGs and cover a factor of 20 in stellar radius. At all radii, the specific angular momentum due to random convective flows implies associated circularization radii of 10–1500 times the innermost stable circular orbit of the BH. During collapse, the angular momentum vector of the convective flows is approximately conserved and is slowly varying on the time-scale relevant to forming discs at small radii. Our results indicate that otherwise failed explosions of RSGs lead to the formation of rotationally supported flows that are capable of driving outflows to large radii and powering observable transients. When the BH is able to accrete most of the hydrogen envelope, the final BH spin parameter is ∼ 0.5, even though the star is non-rotating. For fractional accretion of the envelope, the spin parameter is generally lower and never exceeds 0.8. We discuss the implications of our results for transients produced by RSG collapse to a black hole.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 176-197
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    When collapse of the iron core in a massive red or yellow supergiant does not lead to an energetic supernova, a significant fraction of the convective hydrogen envelope will fall in towards the black hole formed from the collapsing core. The random velocity field in the convective envelope results in finite specific angular momentum in each infalling shell. Using 3D hydrodynamical simulations, we follow the infall of this material to small radii, resolving the circularization radii of the flow. We show that infall of the convective envelope leads to nearly complete envelope ejection in a ≳1048 erg explosion with outflow speeds of ≳200 km s−1. The light curve of such an explosion would show a characteristic, red plateau as the ejecta cools and a hydrogen recombination front recedes through the expanding ejecta. Adopting supernova IIp scalings, the event would have a plateau luminosity of ≳1040 erg s−1 and a duration of several hundreds of days. These events would appear quite similar to luminous red novae with red or yellow supergiant progenitors; some luminous red novae may, in fact, be signposts of black hole formation. The mechanism studied here produces more energetic explosions than the weak shock generated from radiation of neutrino energy during the protoneutron star phase. Because we cannot simulate all the way to the horizon, our results are likely lower limits on the energy and luminosity of transients produced during the collapse of a red or yellow supergiant to form a black hole.

    more » « less
  2. Abstract

    Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS.

    more » « less
  3. Abstract

    If the envelope of a massive star is not entirely removed during common envelope (CE) interaction with an orbiting compact (e.g., black hole (BH) or neutron star (NS)) companion, the residual bound material eventually cools, forming a centrifugally supported disk around the binary containing the stripped He core. We present a time-dependent height-integrated model for the long-term evolution of post-CE circumbinary disks (CBDs), accounting for mass and angular momentum exchange with the binary, irradiation heating by the He core, and photoevaporation wind mass loss. A large fraction of the CBD’s mass is accreted prior to its outwards viscous spreading and wind dispersal on a timescale of ∼104–105yr, driving significant orbital migration, even for disks containing ∼10% of the original envelope mass. Insofar that the CBD lifetime is comparable to the thermal (and, potentially, nuclear) timescale of the He core, over which a second mass-transfer episode onto the companion can occur, the presence of the CBD could impact the stability of this key phase. Disruption of the core by the BH/NS would result in a jetted energetic explosion into the dense gaseous CBD (≲1015cm) and its wind (≳1016cm), consistent with the environments of luminous fast blue optical transients like AT2018cow. Evolved He cores that undergo core collapse still embedded in their CBD could generate Type Ibn/Icn supernovae. Thousands of dusty wind-shrouded massive-star CBDs may be detectable as extragalactic luminous infrared sources with the Roman Space Telescope; synchrotron radio nebulae powered by the CBD-fed BH/NS may accompany these systems.

    more » « less
  4. ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra. 
    more » « less

    With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. In particular, the recent ALMA C3H2 line observations of the nearby protostar L1527 have been interpreted as evidence for the so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by our simulations.

    more » « less