skip to main content


Title: The Evolution of a Northward‐Propagating Buoyant Coastal Plume After a Wind Relaxation Event
Abstract

After a relaxation of the regional southward, upwelling‐favorable winds along the central California coast, warm water from the Santa Barbara Channel propagates northward as a buoyant plume. As the plume transits up the coast, it causes abrupt temperature changes and modifies shelf stratification. We use temperature and velocity data from 35 moorings north of Pt. Arguello to track the evolution of a buoyant plume after a wind relaxation event in October 2017. The moorings were deployed September–October 2017 and span a ∼30 km stretch of coastline, including nine cross‐shelf transects that range from 17 to 100 m water depth. The high spatial resolution of the data set enables us to track the spatiotemporal evolution of the plume, including across‐front temperature difference, cross‐shore structure, and propagation velocity. We observe an alongshore current velocity signal that takes ∼10 hr to propagate ∼25 km alongshore (∼0.7 m/s) and a temperature signal that takes ∼34 hr to propagate the same distance (∼0.2 m/s). The plume cools as it transits northward, leading to a decrease in the cross‐front temperature difference and the reduced gravity (g’). The plume’s propagation velocity is nonuniform in space and time, with accelerations and decelerations unexplained by the alongshore reduction ing’or advection by tidal currents. As the plume reaches the northernmost part of the mooring array, its temperature variability is obscured by internal waves, a prominent feature in the region. We focus on one relaxation event but observe five other similar events over the 2 months record.

 
more » « less
Award ID(s):
1949067
NSF-PAR ID:
10362519
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
12
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A unique feature of small mountainous rivers is that discharge can be elevated by an order of magnitude during a large rain event. The impact of time-varying discharge on freshwater transport pathways and alongshore propagation rates in the coastal ocean is not well understood. A suite of simulations in an idealized coastal ocean domain using the Regional Ocean Modeling System (ROMS) with varying steady background discharge conditions (25–100 m 3 s −1 ), pulse amplitude (200–800 m 3 s −1 ), pulse duration (1–6 days), and steady downwelling-favorable winds (0–4 m s −1 ) are compared to investigate the downstream freshwater transport along the coast (in the direction of Kelvin wave propagation) following a discharge pulse from the river. The nose of the pulse propagates rapidly alongshore at 0.04–0.32 m s −1 (faster propagation corresponds with larger pulse volume and faster winds) transporting 13%–66% of the discharge. The remainder of the discharge volume initially accumulates in the bulge near the river mouth, with lower retention for longer pulse duration and stronger winds. Following the pulse, the bulge eddy disconnects from the river mouth and is advected downstream at 0–0.1 m s −1 , equal to the depth-averaged wind-driven ambient water velocity. As it transits alongshore, it sheds freshwater volume farther downstream and the alongshore freshwater transport stays elevated between the nose and the transient bulge eddy. The evolution of freshwater transport at a plume cross section can be described by the background discharge, the passage of the pulse nose, and a slow exponential return to background conditions. 
    more » « less
  2. Abstract

    We use observations from the Quinault River, a small river that flows into an energetic surf zone on the West Coast of Washington state, to investigate the interaction between river and wave forcing. By synthesizing data from moorings, drifters, and Unmanned Aerial System video, we develop a conceptual model of this interaction based on three length scales: the surf zone width,LSZ; the near‐field plume length,LNF; and the cross‐shore extent of the channel,LC. The relationships between these length scales show how tidal variability and bathymetric effects change the balance of wave and river momentum. The most frequently observed state isLSZ>LNF. Under these conditions the surf zone traps the outflowing river plume and the river water's initial propagation into the surf zone is set byLNF. When the river velocity is highest during low water, and when wave forcing is low,LNF>LSZand river water escapes the surf zone. At high water during low wave forcing,LC>LSZ, such that minimal wave breaking occurs in the channel and river water escapes onto the shelf. Based on the discharge, wave, and tidal conditions, the conceptual model is used to predict the fate of river water from the Quinault over a year, showing that approximately 70% of the river discharge is trapped in the surf zone upon exiting the river mouth.

     
    more » « less
  3. Abstract

    Circulation patterns over the inner continental shelf can be spatially complex and highly variable in time. However, few studies have examined alongshore variability over short scales of kilometers or less. To observe inner‐shelf bottom temperatures with high (5‐m) horizontal resolution, a fiber‐optic distributed temperature sensing system was deployed along a 5‐km‐long portion of the 15‐m isobath within a larger‐scale mooring array south of Martha's Vineyard, MA. Over the span of 4 months, variability at a range of scales was observed along the cable over time periods of less than a day. Notably, rapid cooling events propagated down the cable away from a tidal mixing front, showing that propagating fronts on the inner shelf can be generated locally near shallow bathymetric features in addition to remote offshore locations. Propagation velocities of observed fronts were influenced by background tidal currents in the alongshore component and show a weak correlation with theoretical gravity current speeds in the cross‐shore component. These events provide a source of cold, dense water into the inner shelf. However, differences in the magnitude and frequency of cooling events at sites separated by a few kilometers in the alongshore direction suggest that the characteristics of small‐scale variability can vary dramatically and can result in differential fluxes of water, heat, and other tracers. Thus, under stratified conditions, prolonged subsurface observations with high spatial and temporal resolution are needed to characterize the implications of three‐dimensional circulation patterns on exchange, especially in regions where the coastline and isobaths are not straight.

     
    more » « less
  4. Abstract

    A tracking algorithm based upon a multiple object tracking method is developed to identify, track, and classify Tropical Intraseasonal Oscillations (TISO) on the basis of their direction of propagation. Daily National Oceanic and Atmospheric Administration Outgoing Longwave Radiation anomalies from 1979–2017 are Lanczos band‐pass filtered for the intraseasonal time scale (20–100 days) and spatially averaged with nine neighboring points to get spatially smoothed anomalies over large spatial scales (~105km2). TISO events are tracked by using a two‐stage Kalman filter predictor‐corrector method. Two dominant components of the TISO (Eastward propagating and Northward propagating) are classified, and it is found that TISO remains active throughout the year. Eastward‐propagating TISO events occur from November to April with a phase speed of ~4 m/s and northward‐propagating TISO events occur from May to October with a phase speed of ~2.5 m/s in both the Indian and Pacific Ocean basins. Composites of the mean background states (wind; sea surface temperature, SST; and moisture) reveal that the co‐occurrence of warm SST and mean westerly zonal wind plays an important role in the direction of propagation and the geographical location of TISO events. In mean state sensitivity experiments with Sp‐CAM4, we have found that the seasonality of TISO in terms of the geographical location of occurrences and direction of propagation is primarily associated with the annual march of the maximum SST and low level zonal wind which tends to follow the SST.

     
    more » « less
  5. Abstract

    Ammonium, a key intermediate nutrient, is typically low to undetectable on the Oregon coast, particularly as active upwelling delivers high onshore flow of ammonium‐poor waters. However, during bloom and post‐bloom conditions large ammonium concentrations and uptake rates have been described. High‐frequencyon boardnitrate + nitrite and ammonium analysis synchronized with continuous data from a towed profiling vehicle (equipped with in situ temperature, salinity, dissolved oxygen, and beam attenuation sensors), allowed us to describe coupled high‐resolution physico‐chemical dynamics of inorganic nitrogen in seven cross‐shelf transects, over several days, during an active phytoplankton bloom following cessation of upwelling favorable winds. We present first‐of‐their‐kind high‐resolution cross‐sections showing a build‐up, both within a thin plume of onshore‐originated water, and in mid‐to‐bottom on‐shore water columns, from undetectable values to up to 8 µM of ammonium. The plume extended across the shelf at mid‐depth and was identified in all transects. We also detected a decrease of nitrate in distinct water masses close to the mid‐shelf seabed, associated with low dissolved oxygen, and identified and quantified the amount of nitrogen lost. We found that nitrogen loss was minimal on the first days of relaxation conditions, and increased up to 12 μM off Newport. Combining nitrogen fluxes from benthic incubation chambers and N loss calculated with the NO tracer, we estimated that denitrification in sediments could not account for all N loss, requiring 22%–86% to occur elsewhere. Close association of N loss with particle‐rich, low O2waters suggests the possibility that particle‐aggregate micro‐environments could provide additional sites for water column denitrification.

     
    more » « less