When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code h-amr. We carry out the first grid-based simulation of a deep-penetration TDE (β = 7) with realistic system parameters: a black hole-to-star mass ratio of 106, a parabolic stellar trajectory, and a non-zero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream–disc interactions near the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Althoughmore »
Tidal disruption events (TDEs) occur when a star gets torn apart by the strong tidal forces of a supermassive black hole, which results in the formation of a debris stream that partly falls back towards the compact object. This gas moves along inclined orbital planes that intersect near pericentre, resulting in a so-called ‘nozzle shock’. We perform the first dedicated study of this interaction, making use of a two-dimensional simulation that follows the transverse gas evolution inside a given section of stream. This numerical approach circumvents the lack of resolution encountered near pericentre passage in global three-dimensional simulations using particle-based methods. As it moves inward, we find that the gas motion is purely ballistic, which near pericentre causes strong vertical compression that squeezes the stream into a thin sheet. Dissipation takes place at the resulting nozzle shock, inducing a rise in pressure that causes the collapsing gas to bounce back, although without imparting significant net expansion. As it recedes to larger distances, this matter continues to expand while remaining thin despite the influence of pressure forces. This gas evolution specifies the strength of the subsequent self-crossing shock, which we find to be more affected by black hole spin than previously more »
- Publication Date:
- NSF-PAR ID:
- 10362527
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 2147-2169
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract In addition to a supermassive black hole (SMBH), the central parsec of the Milky Way hosts over 100 massive, high-velocity young stars whose existence, and organization of a subset of them in one, or possibly two, misaligned disks, is puzzling. Due to a combination of low medium density and strong tidal forces in the vicinity of Sgr A*, stars are not expected to form. Here we propose a novel scenario for their in situ formation: a jetted tidal disruption event (TDE) from an older wandering star triggers an episode of positive feedback of star formation in the plane perpendicular to the jet, as demonstrated via numerical simulations in the context of jet-induced feedback in galactic outflows. An overpressured cocoon surrounding the jet shock-compresses clumps to densities high enough to resist the SMBH tidal field. The TDE rate of 10−5–10−4yr−1per galaxy, out of which a few percent of events are jetted, implies a jetted TDE event per galaxy to occur every few million years. This timescale is interestingly of the same order of the age of the disk stars. The mass function predicted by our mechanism is top heavy. Additionally, since TDEs are isotropic, our model predicts a random orientationmore »
-
ABSTRACT We use the general relativistic radiation magnetohydrodynamics code KORAL to simulate the accretion disc formation resulting from the tidal disruption of a solar mass star around a supermassive black hole (BH) of mass 106 M⊙. We simulate the disruption of artificially more bound stars with orbital eccentricity e ≤ 0.99 (compared to the more realistic case of parabolic orbits with e = 1) on close orbits with impact parameter β ≥ 3. We use a novel method of injecting the tidal stream into the domain, and we begin the stream injection at the peak fallback rate in this study. For two simulations, we choose e = 0.99 and inject mass at a rate that is similar to parabolic TDEs. We find that the disc only becomes mildly circularized with eccentricity e ≈ 0.6 within the 3.5 d that we simulate. The rate of circularization is faster for pericenter radii that come closer to the BH. The emitted radiation is mildly super-Eddington with $L_{\rm {bol}}\approx 3{-}5\, L_{\rm {Edd}}$ and the photosphere is highly asymmetric with the photosphere being significantly closer to the inner accretion disc for viewing angles near pericenter. We find that soft X-ray radiation with Trad ≈ 3–5 × 105 K may be visible for chance viewing angles.more »
-
ABSTRACT We present general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of super-Eddington accretion flows around supermassive black holes (SMBHs), which may apply to tidal disruption events (TDEs). We perform long duration ($t\ge 81,200\, GM/c^3$) simulations that achieve mass accretion rates ≳11 times the Eddington rate and produce thermal synchrotron spectra and images of their jets. Gas flowing beyond the funnel wall expands conically and drives a strong shock at the jet head while variable mass ejection and recollimation, along the jet axis, results in internal shocks and dissipation. Assuming the ion temperature (Ti) and electron temperature (Te) in the plasma are identical, the radio/submillimetre spectra peak at >100 GHz and the luminosity increases with BH spin, exceeding $\sim 10^{41} \, \rm {erg\, s^{-1}}$ in the brightest models. The emission is extremely sensitive to Ti/Te as some models show an order-of-magnitude decrease in the peak frequency and up to four orders-of-magnitude decline in their radio/submillimetre luminosity as Ti/Te approaches 20. Assuming a maximum VLBI baseline distance of 10 Gλ, 230 GHz images of Ti/Te = 1 models shows that the jet head may be bright enough for its motion to be captured with the EHT (ngEHT) at D ≲ 110 (180) Mpc at the 5σ significance level.more »
-
ABSTRACT Backsplash galaxies are galaxies that once resided inside a cluster, and have migrated back outside as they move towards the apocentre of their orbit. The kinematic properties of these galaxies are well understood, thanks to the significant study of backsplashers in dark matter-only simulations, but their intrinsic properties are not well-constrained due to modelling uncertainties in subgrid physics, ram pressure stripping, dynamical friction, and tidal forces. In this paper, we use the IllustrisTNG300-1 simulation, with a baryonic resolution of Mb ≈ 1.1 × 107 M⊙, to study backsplash galaxies around 1302 isolated galaxy clusters with mass 1013.0 < M200,mean/M⊙ < 1015.5. We employ a decision tree classifier to extract features of galaxies that make them likely to be backsplash galaxies, compared to nearby field galaxies, and find that backsplash galaxies have low gas fractions, high mass-to-light ratios, large stellar sizes, and low black hole occupation fractions. We investigate in detail the origins of these large sizes, and hypothesize their origins are linked to the tidal environments in the cluster. We show that the black hole recentring scheme employed in many cosmological simulations leads to the loss of black holes from galaxies accreted into clusters, and suggest improvements to these models. Generally, wemore »