skip to main content


Title: Separation of Artifacts from Spin‐Torque Ferromagnetic Resonance Measurements of Spin‐Orbit Torque for the Low‐Symmetry Van der Waals Semi‐Metal ZrTe 3
Abstract

Spin‐orbit torques generated by exfoliated layers of the low‐symmetry semi‐metal ZrTe3are measured using the spin‐torque ferromagnetic resonance (ST‐FMR) technique. When the ZrTe3has a thickness greater than about 10 nm, artifacts due to spin pumping and/or resonant heating can cause the standard ST‐FMR analysis to overestimate the true magnitude of the torque efficiency by as much as a factor of 30, and to indicate incorrectly that the spin‐orbit torque depends strongly on the ZrTe3layer thickness. Artifact‐free measurements can still be achieved over a substantial thickness range by the method developed recently to detect ST‐FMR signals in the Hall geometry as well as the longitudinal geometry. ZrTe3/Permalloy samples generate a conventional in‐plane anti‐damping spin torque efficiency = 0.014 ± 0.004, and an unconventional in‐plane field‐like torque efficiency = 0.003 ± 0.001. The out‐of‐plane anti‐damping torque is negligible. It is suggested that artifacts similarly interfere with the standard ST‐FMR analysis for other van der Waals samples thicker than about 10 nm.

 
more » « less
PAR ID:
10362531
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
5
Issue:
2
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We measure spin-orbit torque generated by exfoliated layers of the low-symmetry semi-metal ZrTe3 using the spin-torque ferromagnetic resonance (ST-FMR) technique. When the ZrTe3 has a thickness greater than about 10 nm, artifacts due to spin pumping and/or resonant heating can cause the standard ST-FMR analysis to overestimate the true magnitude of the torque efficiency by as much as a factor of 30, and to indicate incorrectly that the spin-orbit torque depends strongly on the ZrTe3 layer thickness. Artifact-free measurements can still be achieved over a substantial thickness range by the method developed recently to detect ST-FMR signals in the Hall geometry as well as the longitudinal geometry. ZrTe3/Permalloy samples generate a conventional in-plane anti-damping spin torque efficiency ξDL|| = 0.014 ± 0.004, and an unconventional in-plane field-like torque efficiency |ξFL||| = 0.003 ± 0.001. The out-of-plane anti-damping torque is negligible. We suggest that artifacts similarly interfere with the standard ST-FMR analysis for other van der Waals samples thicker than about 10 nm. 
    more » « less
  2. It was recently demonstrated in bilayers of permalloy and platinum, that by combining spin torques arising from the spin Hall effect with Oersted field-like torques, magnetization dynamics can be induced with a directional preference.1 This “unidirectional” magnetization dynamic effect is made possible by exploiting the different even and odd symmetry that damping-like and field-like torques respectively have when magnetization is reversed. The experimental method used to demonstrate this effect was the spin-torque ferromagnetic (ST-FMR) resonance technique; a popular tool used in the phenomenological quantification of a myriad of damping-like and field-like torques. In this report, we review the phenomenology which is used to describe and analyze the unidirectional magnetization dynamic effect in ST-FMR measurements. We will focus on how the asymmetry in the dynamics also is present in the phase angle of the magnetization precession. We conclude by demonstrating a utility of this directional effect; we will outline an improved experimental method that can be used to distinguish a phase-shifted field-like torque in a ST-FMR experiment from a combination of field-like and damping-like torques. 
    more » « less
  3. Efficient manipulation of antiferromagnetically coupled materials that are integration-friendly and have strong perpendicular magnetic anisotropy (PMA) is of great interest for low-power, fast, dense magnetic storage and computing. Here, we report a distinct, giant bulk damping-like spin–orbit torque in strong-PMA ferrimagnetic Fe 100− x Tb x single layers that are integration-friendly (composition-uniform, amorphous, and sputter-deposited). For sufficiently thick layers, this bulk torque is constant in the efficiency per unit layer thickness, [Formula: see text]/ t, with a record-high value of 0.036 ± 0.008 nm −1 , and the damping-like torque efficiency [Formula: see text] achieves very large values for thick layers, up to 300% for 90 nm layers. This giant bulk torque by itself switches tens of nm thick Fe 100− x Tb x layers that have very strong PMA and high coercivity at current densities as low as a few MA/cm 2 . Surprisingly, for a given layer thickness, [Formula: see text] shows strong composition dependence and becomes negative for composition where the total angular momentum is oriented parallel to the magnetization rather than antiparallel. Our findings of giant bulk spin torque efficiency and intriguing torque-compensation correlation will stimulate study of such unique spin–orbit phenomena in a variety of ferrimagnetic hosts. This work paves a promising avenue for developing ultralow-power, fast, dense ferrimagnetic storage and computing devices. 
    more » « less
  4. Abstract

    Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K.

     
    more » « less
  5. Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2layer to enable such switching with a low current density of 2.23 × 106A cm−2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices.

     
    more » « less