Woody encroachment into grassy biomes is a global phenomenon, often resulting in a nearly complete turnover of species, with savanna specialists being replaced by forest‐adapted species. Understanding the mechanisms involved in this change is important for devising strategies for managing savannas. We examined how isolated trees favour woody encroachment and species turnover by overcoming dispersal limitation and environmental filtering. In a savanna released from fire in south‐eastern Brazil (Cerrado), we sampled woody plants establishing under 40 tree canopies and in paired treeless plots. These trees comprised eight species selected for habitat preference (savanna or forest) and dispersal syndrome (bird dispersed or not). We recorded dimensions of each tree, dispersal syndrome and habitat preference of recruits, and quantified the physical environment within each plot, aiming at a mechanistic understanding of woody encroachment. We found clear evidence that isolated trees cause nucleation and drive changes in functional composition of savanna. Effectiveness as nucleator differed among species, but was unrelated to their functional guilds (habitat preference or dispersal syndrome). The density of saplings in nuclei was partially explained by soil moisture (+), daily temperature amplitude (−) and sum of bases (−). Our results indicate that isolated trees act first as perches, strongly favouring bird‐dispersed species. They then act as nurse trees, considerably changing the environment in favour of forest‐adapted recruits. In the long term, as the nuclei expand and merge, savanna specialists tend to disappear and the savanna turns into a low‐diversity forest.
Forest encroachment into savannas is a widespread phenomenon, the rate of which may depend on soil conditions, species composition or changes in stand structure. As savanna specialist trees are replaced by generalist species, rates of stand development may increase. Because generalists can persist in forests, they are likely to grow more quickly and survive longer in dense stands, compared to savanna specialists. Furthermore, the faster growth rates of generalists may allow them to overtop and outcompete savanna specialists, causing rapid species turnover. We measured growth and survival of 6,147 individuals of 112 species of savanna and generalist tree species over a period of 10 years in an ecological reserve in Assis, São Paulo State, Brazil. We modelled growth and mortality as a function of soil texture and nutrients, tree size, competitive neighbourhood, and membership in savanna or generalist (species which can persist in forests and savannas) functional groups. Tree growth and survival was strongly influenced by competition, as estimated by the basal area of trees taller than a focal tree. At the stand level, savanna species are unable to contribute basal area growth in closed stands, while generalist species continue to increase in basal area even at high stand basal area. This phenomenon is driven by differences in growth and mortality. Generalists grew faster than savanna species, both in height and diameter. This difference in growth rates led to savanna species becoming suppressed more rapidly than generalists. When suppressed, savanna species were more than twice as likely to die than were generalists. Soils had inconsistent and mostly weak effects which were difficult to separate from gradients of stand structure.
- PAR ID:
- 10362544
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 110
- Issue:
- 2
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- p. 301-312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis and applications . Fire suppression has allowed the nucleation process and consequently the woody encroachment and fast replacement of savanna specialists by forest species in the Cerrado. By elucidating the mechanisms behind woody encroachment, we recommend using prescribed fires to burn forest seedlings and to reduce tree canopy size wherever the management goal is to maintain the typical savanna structure and composition. -
Abstract Under fire suppression, many tropical savannas transform into forests. Forest expansion entails changes in environmental variables and plant community structure. We hypothesized that forest expansion into savanna results in a shift in community‐weighted mean functional traits from stress tolerance to competitiveness, with generalist species having trait values intermediate between those of specialists of savanna and forest habitats.
We studied 30 plots distributed over three savanna–forest boundaries undergoing forest expansion in the Brazilian Cerrado, capturing a gradient from open savanna to recently formed forest. We measured functional traits of 116 woody species of savanna specialist, generalist and forest specialist functional groups and quantified changes in species composition and mean traits across the basal area gradient.
We identified two main axes of species traits. The first separated forest and generalist species from savanna specialists, with the latter possessing traits associated with resistance to disturbance and stress— such as thick leaves, thick bark, slower height growth and lower shade tolerance. Our second trait axis separated shrubs and understorey trees from pioneer species. Generalist species’ traits did not differ substantially from forest species, nor did they tend to have a typical pioneer strategy.
Community‐weighted trait means changed linearly with forest development. There was a steady increase in traits associated with competitive dominance rather than stress tolerance and fire resistance, indicating a wholesale shift in the selective environment. Several of these patterns—for example, increasing height and decreasing light requirements—are common in old‐field succession. In contrast to old‐field succession, we found that SLA increased, leaf thickness decreased and wood density stayed constant.
The assembly of forests appears to be shaped by environmental filters that contribute to a functional trajectory distinct from most other studied ecosystems. Our results highlight the importance of the functional composition of the early community and of the early colonizers of the open environment. Differences between savanna and forest specialists reflect the selective effects of the contrasting environments, while the traits of generalists—and their interaction with environmental filters—drive the dynamics of forest expansion.
A free
Plain Language Summary can be found within the Supporting Information of this article. -
Abstract The consequences of land‐use change for savanna biodiversity remain undocumented in most regions of tropical Asia. One such region is western Maharashtra, India, where old‐growth savannas occupy a broad rainfall gradient and are increasingly rare due to agricultural conversion and afforestation.
To understand the consequences of land‐use change, we sampled herbaceous plant communities of old‐growth savannas and three alternative land‐use types: tree plantations, tillage agriculture and agricultural fallows (
n = 15 sites per type). Study sites spanned 457 to 1954 mm of mean annual precipitation—corresponding to the typical rainfall range of mesic savannas globally.Across the rainfall gradient, we found consistent declines in old‐growth savanna plant communities due to land‐use change. Local‐scale native species richness dropped from a mean of 12 species/m2in old‐growth savannas to 8, 6 and 3 species/m2in tree plantations, fallows and tillage agriculture, respectively. Cover of native plants declined from a mean of 49% in old‐growth savannas to 27% in both tree plantations and fallows, and 4% in tillage agriculture. Reduced native cover coincided with increased cover of invasive species in tree plantations (18%), fallows (18%) and tillage agriculture (3%).
In analyses of community composition, tillage agriculture was most dissimilar to old‐growth savannas, while tree plantations and fallows showed intermediate dissimilarity. These compositional changes were driven partly by the loss of characteristic savanna species: 65 species recorded in old‐growth savannas were absent in other land uses. Indicator analysis revealed 21 old‐growth species, comprised mostly of native savanna specialists. Indicators of tree plantations (nine species) and fallows (13 species) were both invasive and native species, while the two indicators of tillage agriculture were invasive. As reflective of declines in savanna communities, mean native perennial graminoid cover of 27% in old‐growth savannas dropped to 9%, 7%, and 0.1% in tree plantations, fallows and tillage agriculture, respectively.
Synthesis . Agricultural conversion and afforestation of old‐growth savannas in India destroys and degrades herbaceous plant communities that do not spontaneously recover on fallowed land. Efforts to conserve India's native biodiversity should encompass the country's widespread savanna biome and seek to limit conversion of irreplaceable old‐growth savannas. -
Abstract Warming temperatures and rising moisture deficits are expected to increase the rates of background tree mortality–low amounts of tree mortality (~0.5%–2% year−1), characterizing the forest demographic processes in the absence of abrupt, coarse‐scale disturbance events (e.g. fire). When compounded over multiple decades and large areas, even minor increases in background tree mortality (e.g. <0.5% year−1) can cause changes to forest communities and carbon storage potential that are comparable to or greater than those caused by disturbances.
We examine how temporal variability in rates of background tree mortality for four subalpine conifers reflects variability in climate and climate teleconnections using observations of tree mortality from 1982 to 2019 at Niwot Ridge, Colorado, USA. Individually marked trees (initial population 5,043) in 13 permanent plots—located across a range of site conditions, stand ages and species compositions—were censused for new mortality nine times over 37 years.
Background tree mortality was primarily attributed to stress from unfavourable climate and competition (71.2%) and bark beetle activity (23.3%), whereas few trees died from wind (5.3%) and wildlife impacts (0.2%). Mean annualized tree mortality attributed to tree stress and bark beetles more than tripled across all stands between initial censuses (0.26% year−1, 1982–1993/1994) and recent censuses (0.82% year−1, 2008–2019). Higher rates of tree mortality were related to warmer maximum summer temperatures, greater summer moisture deficits, and negative anomalies in ENSO (La Niña), with greater effects of drought in some subpopulations (tree size, age and species). For example, in older stands (>250 years), larger and older trees were more likely to die than smaller and younger trees. Differences in tree mortality rates and sensitivity to climate among subpopulations that varied by stand type may lead to unexpected shifts in stand composition and structure.
Synthesis . A strong relationship between higher rates of tree mortality and warmer, drier summer climate conditions implies that climate warming will continue to increase background mortality rates in subalpine forests. Combined with increases in disturbances and declining frequency of moist‐cool years suitable for seedling establishment, increasing rates of tree mortality have the potential to drive declines in subalpine tree populations. -
Abstract In savannas, partitioning of below‐ground resources by depth could facilitate tree–grass coexistence and shape vegetation responses to changing rainfall patterns. However, most studies assessing tree versus grass root‐niche partitioning have focused on one or two sites, limiting generalization about how rainfall and soil conditions influence the degree of rooting overlap across environmental gradients.
We used two complementary stable isotope techniques to quantify variation (a) in water uptake depths and (b) in fine‐root biomass distributions among dominant trees and grasses at eight semi‐arid savanna sites in Kruger National Park, South Africa. Sites were located on contrasting soil textures (clayey basaltic soils vs. sandy granitic soils) and paired along a gradient of mean annual rainfall.
Soil texture predicted variation in mean water uptake depths and fine‐root allocation. While grasses maintained roots close to the surface and consistently used shallow water, trees on sandy soils distributed roots more evenly across soil depths and used deeper soil water, resulting in greater divergence between tree and grass rooting on sandy soils. Mean annual rainfall predicted some variation among sites in tree water uptake depth, but had a weaker influence on fine‐root allocation.
Synthesis . Savanna trees overlapped more with shallow‐rooted grasses on clayey soils and were more distinct in their use of deeper soil layers on sandy soils, consistent with expected differences in infiltration and percolation. These differences, which could allow trees to escape grass competition more effectively on sandy soils, may explain observed differences in tree densities and rates of woody encroachment with soil texture. Differences in the degree of root‐niche separation could also drive heterogeneous responses of savanna vegetation to predicted shifts in the frequency and intensity of rainfall.