We present cosmological constraints from the Subaru Hyper Suprime-Cam (HSC) first-year weak lensing shear catalogue using convolutional neural networks (CNNs) and conventional summary statistics. We crop 19 $3\times 3\, \mathrm{{deg}^2}$ sub-fields from the first-year area, divide the galaxies with redshift 0.3 ≤ z ≤ 1.5 into four equally spaced redshift bins, and perform tomographic analyses. We develop a pipeline to generate simulated convergence maps from cosmological N-body simulations, where we account for effects such as intrinsic alignments (IAs), baryons, photometric redshift errors, and point spread function errors, to match characteristics of the real catalogue. We train CNNs that can predict the underlying parameters from the simulated maps, and we use them to construct likelihood functions for Bayesian analyses. In the Λ cold dark matter model with two free cosmological parameters Ωm and σ8, we find $\Omega _\mathrm{m}=0.278_{-0.035}^{+0.037}$, $S_8\equiv (\Omega _\mathrm{m}/0.3)^{0.5}\sigma _{8}=0.793_{-0.018}^{+0.017}$, and the IA amplitude $A_\mathrm{IA}=0.20_{-0.58}^{+0.55}$. In a model with four additional free baryonic parameters, we find $\Omega _\mathrm{m}=0.268_{-0.036}^{+0.040}$, $S_8=0.819_{-0.024}^{+0.034}$, and $A_\mathrm{IA}=-0.16_{-0.58}^{+0.59}$, with the baryonic parameters not being well-constrained. We also find that statistical uncertainties of the parameters by the CNNs are smaller than those from the power spectrum (5–24 per cent smaller for S8 and a factor of 2.5–3.0 smallermore »
Ongoing and planned weak lensing (WL) surveys are becoming deep enough to contain information on angular scales down to a few arcmin. To fully extract information from these small scales, we must capture non-Gaussian features in the cosmological WL signal while accurately accounting for baryonic effects. In this work, we account for baryonic physics via a baryonic correction model that modifies the matter distribution in dark matter-only N-body simulations, mimicking the effects of galaxy formation and feedback. We implement this model in a large suite of ray-tracing simulations, spanning a grid of cosmological models in Ωm−σ8 space. We then develop a convolutional neural network (CNN) architecture to learn and constrain cosmological and baryonic parameters simultaneously from the simulated WL convergence maps. We find that in a Hyper-Suprime Cam-like survey, our CNN achieves a 1.7× tighter constraint in Ωm−σ8 space (1σ area) than the power spectrum and 2.1× tighter than the peak counts, showing that the CNN can efficiently extract non-Gaussian cosmological information even while marginalizing over baryonic effects. When we combine our CNN with the power spectrum, the baryonic effects degrade the constraint in Ωm−σ8 space by a factor of 2.4, compared to the much worse degradation by a more »
- Publication Date:
- NSF-PAR ID:
- 10362545
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 511
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 1518-1528
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-Cℓ method and complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model as in the DES Y3 real-space analysis, we find ${S_8 \equiv \sigma _8 \sqrt{\Omega _{\rm m}/0.3} = 0.793^{+0.038}_{-0.025}}$, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include smallmore »
-
ABSTRACT We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We take into account the uncertainty from the remaining, largely unconstrained ΛCDM parameters (Ωb, ns, and h). We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv ~\sigma _8\sqrt{\Omega _{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68 per cent confidence limits), with a precision of 1.8 per cent, an improvement of 38 per cent compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be inmore »
-
ABSTRACT Next-generation weak lensing (WL) surveys, such as by the Vera Rubin Observatory, the Roman Space Telescope, and the Euclid space mission, will supply vast amounts of data probing small, highly non-linear scales. Extracting information from these scales requires higher-order statistics and the controlling of related systematics such as baryonic effects. To account for baryonic effects in cosmological analyses at reduced computational cost, semi-analytic baryonic correction models (BCMs) have been proposed. Here, we study the accuracy of a particular BCM (the A20-BCM) for WL peak counts, a well-studied, simple, and effective higher-order statistic. We compare WL peak counts generated from the full hydrodynamical simulation IllustrisTNG and a baryon-corrected version of the corresponding dark matter-only simulation IllustrisTNG-Dark. We apply galaxy shape noise matching depths reached by DES, KiDS, HSC, LSST, Roman, and Euclid. We find that peak counts from the A20-BCM are (i) accurate at per cent level for peaks with S/N < 4, (ii) statistically indistinguishable from IllustrisTNG in most current and ongoing surveys, but (iii) insufficient for deep future surveys covering the largest solid angles, such as LSST and Euclid. We find that the BCM matches individual peaks accurately, but underpredicts the amplitude of the highest peaks. We conclude that themore »
-
Abstract Modifications of the matter power spectrum due to baryonic physics are one of the major theoretical uncertainties in cosmological weak lensing measurements. Developing robust mitigation schemes for this source of systematic uncertainty increases the robustness of cosmological constraints, and may increase their precision if they enable the use of information from smaller scales. Here we explore the performance of two mitigation schemes for baryonic effects in weak lensing cosmic shear: the principal component analysis (PCA) method and the halo-model approach in hmcode. We construct mock tomographic shear power spectra from four hydrodynamical simulations, and run simulated likelihood analyses with cosmolike assuming LSST-like survey statistics. With an angular scale cut of ℓmax < 2000, both methods successfully remove the biases in cosmological parameters due to the various baryonic physics scenarios, with the PCA method causing less degradation in the parameter constraints than hmcode. For a more aggressive ℓmax = 5000, the PCA method performs well for all but one baryonic physics scenario, requiring additional training simulations to account for the extreme baryonic physics scenario of Illustris; hmcode exhibits tensions in the 2D posterior distributions of cosmological parameters due to lack of freedom in describing the power spectrum for $k \gt 10\more »