skip to main content


Title: Taxonomy of protoplanetary discs observed with ALMA
ABSTRACT

Many observations of protoplanetary discs studied with ALMA have revealed the complex substructure present in the discs. Rings and gaps in the dust continuum are now a common sight in many discs; however, their origins still remain unknown. We look at all protoplanetary disc images taken with ALMA from cycles 0 to 5 and find that 56 discs show clear substructure. We further study the 56 discs and classify the morphology seen according to four categories: Rim, Ring, Horseshoe, and Spiral. We calculate the ages of the host stars using stellar isochrones and investigate the relation between the morphology of the substructure seen in the protoplanetary discs and the age of the host stars. We find that there is no clear evolutionary sequence in the protoplanetary discs as the stars increase in age, although there is a slight tendency for spirals to appear in younger systems and horseshoes to be seen in more evolved systems. We also show that majority of the images of protoplanetary discs made by ALMA may not have had a sufficiently high resolution or sensitivity to resolve substructure in the disc. We show that angular resolution is important in detecting substructure within protoplanetary discs, with sensitivity distinguishing between the different types of substructure. We compare the substructure seen in protoplanetary discs at sub-mm to those seen in scattered light. We find that cavities are a common substructure seen in discs at both sub-mm wavelengths and in scattered light.

 
more » « less
NSF-PAR ID:
10362567
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2453-2490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (<1 au) dust lifted slightly out of the mid-plane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus, we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over id ≈ 0−75°, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc mid-planes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions. 
    more » « less
  2. ABSTRACT

    Previous surveys in the far-infrared have found very few, if any, M-dwarf debris discs among their samples. It has been questioned whether M-dwarf discs are simply less common than earlier types, or whether the low detection rate derives from the wavelengths and sensitivities available to those studies. The highly sensitive, long-wavelength Atacama Large Millimetre/submillimetre Array (ALMA) can shed light on the problem. This paper presents a survey of M-dwarf stars in the young and nearby Beta Pictoris Moving Group with ALMA at Band 7 (880 μm). From the observational sample, we detect two new sub-mm excesses that likely constitute unresolved debris discs around GJ 2006 A and AT Mic A and model distributions of the disc fractional luminosities and temperatures. From the science sample of 36 M-dwarfs including AU Mic, we find a disc detection rate of 4/36 or 11.1$^{+7.4}_{-3.3}$ per cent that rises to 23.1$^{+8.3}_{-5.5}$ per cent when adjusted for completeness. We conclude that this detection rate is consistent with the detection rate of discs around G- and K-type stars and that the disc properties are also likely consistent with earlier type stars. We additionally conclude that M-dwarf stars are not less likely to host debris discs, but instead their detection requires longer wavelength and higher sensitivity observations than have previously been employed.

     
    more » « less
  3. ABSTRACT

    We present new ALMA Band 7 observations of the edge-on debris disc around the M1V star GSC 07396-00759. At ∼20 Myr old and in the β Pictoris Moving Group along with AU Mic, GSC 07396-00759 joins it in the handful of low-mass M-dwarf discs to be resolved in the sub-mm. With previous VLT/SPHERE scattered light observations, we present a multiwavelength view of the dust distribution within the system under the effects of stellar wind forces. We find the mm dust grains to be well described by a Gaussian torus at 70 au with a full width at half-maximum of 48 au and we do not detect the presence of CO in the system. Our ALMA model radius is significantly smaller than the radius derived from polarimetric scattered light observations, implying complex behaviour in the scattering phase function. The brightness asymmetry in the disc observed in scattered light is not recovered in the ALMA observations, implying that the physical mechanism only affects smaller grain sizes. High-resolution follow-up observations of the system would allow investigation into its unique dust features as well as provide a true coeval comparison for its smaller sibling AU Mic, singularly well-observed amongst M-dwarfs systems.

     
    more » « less
  4. ABSTRACT

    Investigating the response of icy dust aggregates to water ice sublimation is essential for understanding the formation and properties of planetesimals in protoplanetary discs. However, their fate remains unclear, as previous studies suggest that aggregates could either survive or completely fall apart to (sub)μm-sized grains. Protoplanetary discs around stars undergoing accretion outbursts represent a unique laboratory to study the ice sublimation process, as the water snowline is pushed outward to regions accessible to current observatories. In this work, we aim to understand the aggregates’ response to ice sublimation by focusing on V883 Ori, a system currently undergoing a powerful accretion outburst. We present new analysis of archival high-resolution ALMA observations of the protoplanetary disc of V883 Ori at 0.88, 1.3, 2.0, and 3.1 mm, and derive new radial spectral index profiles, which we compare with predictions from one-dimensional dust evolution simulations. In the region of V883 Ori where water ice has sublimated, we find lower spectral indices than previously obtained, indicating the presence of cm-sized particles. Coupled with our dust evolution models, we find that the only way to explain their presence is to assume that they formed before the outburst and survived the sublimation process. The resilience of dust aggregates to such intense events leads us to speculate that it may extend to other environments with more gentle heating, such as pebbles drifting through the water snowline in quiescent protoplanetary discs. In that case, it may alter the formation pathway of dry planetesimals interior to the snowline.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We present 1.3 mm continuum ALMA long-baseline observations at 3–5 au resolution of 10 of the brightest discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project. We identify a total of 26 narrow rings and gaps distributed in 8 sources and 3 discs with small dust cavities (r <10 au). We find that two discs around embedded protostars lack the clear gaps and rings that are ubiquitous in more evolved sources with Class II SEDs. Our sample includes five objects with previously known large dust cavities (r >20 au). We find that the 1.3 mm radial profiles of these objects are in good agreement with those produced by numerical simulations of dust evolution and planet–disc interactions, which predict the accumulation of mm-sized grains at the edges of planet-induced cavities. Our long-baseline observations resulted in the largest sample of discs observed at ∼3–5 au resolution in any given star-forming region (15 objects when combined with Ophiuchus objects in the DSHARP Large Program) and allow for a demographic study of the brightest $\sim\! 5{{\ \rm per\ cent}}$ of the discs in Ophiuchus (i.e. the most likely formation sites of giant planets in the cloud). We use this unique sample to propose an evolutionary sequence and discuss a scenario in which the substructures observed in massive protoplanetary discs are mainly the result of planet formation and dust evolution. If this scenario is correct, the detailed study of disc substructures might provide a window to investigate a population of planets that remains mostly undetectable by other techniques. 
    more » « less