skip to main content


Title: Dynamically Tagged Groups of Metal-poor Stars from the Best and Brightest Survey
Abstract

Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼4000 metal-poor stars ([Fe/H] ≤ −0.8) compiled from the Best and Brightest survey. Selected as metal-poor candidates based on broadband near- and far-IR photometry, 43% of these stars had medium-resolution (1200 ≲R≲ 2000) validation spectra obtained over a 7 yr campaign from 2014 to 2020 with a variety of telescopes. The remaining stars were chosen based on photometric metallicity determinations from the Huang et al. recalibration of the Sky Mapper Southern Survey. Dynamical clusters of these stars are obtained from the orbital energy and cylindrical actions using theHDBSCANunsupervised learning algorithm. We identify 52 dynamically tagged groups (DTGs) with between five and 21 members; 18 DTGs have at least 10 member stars. Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the Metal-Weak Thick-Disk, Thamnos, the Splashed Disk, and the Helmi Stream are identified. Associations with MW globular clusters are determined for eight DTGs; no recognized MW dwarf galaxies were associated with any of our DTGs. Previously identified dynamical groups are also associated with our DTGs, with emphasis placed on their structural determination and possible new identifications. Chemically peculiar stars are identified as members of several DTGs, with six DTGs that are associated withr-process-enhanced stars. We demonstrate that the mean carbon andα-element abundances of our DTGs are correlated with their mean metallicity in an understandable manner. Similarly, we find that the mean metallicity, carbon, andα-element abundances are separable into different regions of the mean rotational-velocity space.

 
more » « less
NSF-PAR ID:
10362585
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 26
Size(s):
["Article No. 26"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]∼−1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe i and Fe ii lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of vhel = −15.62±7.7 km s−1 and a r metallicity of [Fe/H] = −1.05±0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=≈+0.28, [Si/Fe]≈+0.19, and [Ca/Fe]≈+0.13, together with the iron-peak element [Ti/Fe]≈+0.13, and the r-process element [Eu/Fe]=+0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less
  2. Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H] ~ −1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r -process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na–Al, Na–N, and Mg–Al correlations, while we cannot identify the Na–O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe  I and Fe  II lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of v r hel = −15.62±7.7 km s −1 and a metallicity of [Fe/H] = −1.05 ± 0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe] = +0.38, [Mg/Fe] = ≈+0.28, [Si/Fe] ≈ +0.19, and [Ca/Fe] ≈ +0.13, together with the iron-peak element [Ti/Fe] ≈ +0.13, and the r -process element [Eu/Fe] = +0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and −0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances. 
    more » « less
  3. Abstract We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from Gaia EDR3 and DR3, supplemented by additional available information where needed. After separating our sample into the different CEMP morphological groups in the Yoon–Beers diagram of absolute carbon abundance versus metallicity, we used the derived specific energies and actions ( E , J r , J ϕ , J z ) to cluster them into Chemodynamically Tagged Groups (CDTGs). We then analyzed the elemental-abundance dispersions within these clusters by comparing them to the dispersion of clusters that were generated at random. We find that, for the Group I (primarily CEMP- s and CEMP- r / s ) clustered stars, there exist statistically insignificant intracluster dispersions in [Fe/H], [C/Fe] c (evolution corrected carbon), and [Mg/Fe] when compared to the intracluster dispersions of randomly clustered Group I CEMP stars. In contrast, the Group II (primarily CEMP-no) stars exhibit clear similarities in their intracluster abundances, with very low, statistically significant, dispersions in [C/Fe] c and marginally significant results in [Mg/Fe]. These results strongly indicate that Group I CEMP stars received their carbon enhancements from local phenomena, such as mass transfer from an evolved binary companion in regions with extended star formation histories, while the CDTGs of Group II CEMP stars formed in low-metallicity environments that had already been enriched in carbon, likely from massive rapidly rotating ultra- and hyper-metal-poor stars and/or supernovae associated with high-mass early-generation stars. 
    more » « less
  4. ABSTRACT

    This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), α-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the s-process element (Ce) for the four stars with high-signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of 〈[Fe/H]〉 = −1.15 ± 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, 〈[Ni/Fe]〉 ∼ +0.01, and a moderate enhancement of α-elements, ranging between +0.16 and <+0.42, and a slight enhancement of the s-process element 〈[Ce/Fe]〉 ∼ +0.19. We also found low levels of 〈[Al/Fe]〉 ∼ +0.09, but with a strong enrichment of nitrogen, [N/Fe] > +0.99, along with a low level of carbon, [C/Fe] < −0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity.

     
    more » « less
  5. Abstract

    In this work, we study the phase-space and chemical properties of the Sagittarius (Sgr) stream, the tidal tails produced by the ongoing destruction of the Sgr dwarf spheroidal (dSph) galaxy, focusing on its very metal-poor (VMP; [Fe/H] < −2) content. We combine spectroscopic and astrometric information from SEGUE and Gaia EDR3, respectively, with data products from a new large-scale run of theStarHorsespectrophotometric code. Our selection criteria yield ∼1600 stream members, including >200 VMP stars. We find the leading arm (b> 0°) of the Sgr stream to be more metal-poor, by ∼0.2 dex, than the trailing one (b< 0°). With a subsample of turnoff and subgiant stars, we estimate this substructure’s stellar population to be ∼1 Gyr older than the thick disk’s. With the aid of anN-body model of the Sgr system, we verify that simulated particles stripped earlier (>2 Gyr ago) have present-day phase-space properties similar to lower metallicity stream stars. Conversely, those stripped more recently (<2 Gyr) are preferentially akin to metal-rich ([Fe/H] > −1) members of the stream. Such correlation between kinematics and chemistry can be explained by the existence of a dynamically hotter, less centrally concentrated, and more metal-poor population in Sgr dSph prior to its disruption, implying that this galaxy was able to develop a metallicity gradient before its accretion. Finally, we identified several carbon-enhanced metal-poor ([C/Fe] > +0.7 and [Fe/H] ≤ −1.5) stars in the Sgr stream, which might be in tension with current observations of its remaining core where such objects are not found.

     
    more » « less