skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Title: Dust distributions in the magellanic clouds

We present high-resolution maps of the dust reddening in the Magellanic Clouds (MCs). The maps cover the Large and Small Magellanic Cloud (LMC and SMC) area and have a spatial angular resolution between ∼26 arcsec and 55 arcmin. Based on the data from the optical and near-infrared (IR) photometric surveys, including the Gaia Survey, the SkyMapper Southern Survey (SMSS), the Survey of the Magellanic Stellar History (SMASH), the Two Micron All Sky Survey (2MASS), and the near-IR YJKS VISTA survey of the Magellanic Clouds system (VMC), we have obtained multiband photometric stellar samples containing over 6 million stars in the LMC and SMC area. Based on the measurements of the proper motions and parallaxes of the individual stars from Gaia Early Data Release 3 (Gaia EDR3), we have built clean samples that contain stars from the LMC, SMC, and Milky Way (MW), respectively. We apply the spectral energy distribution (SED) fitting to the individual sample stars to estimate their reddening values. As a result, we have derived the best-fitting reddening values of ∼1.9 million stars in the LMC, 1.5 million stars in the SMC, and 0.6 million stars in the MW, which are used to construct dust reddening maps in the MCs. Our maps are consistent with those from the literature. The resultant high-resolution dust maps in the MCs are not only important tools for reddening correction of sources in the MCs, but also fundamental for the studies of the distribution and properties of dust in the two galaxies.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 1317-1329
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [ α /Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α -element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution. 
    more » « less
  2. We present a map of the total intrinsic reddening across ≃ 90 deg2 of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the lephare χ2 minimization SED-fitting routine. We find excellent agreement between the regions of enhanced intrinsic reddening across the central (4 × 4 deg2) region of the LMC and the morphology of the low-level pervasive dust emission as traced by far-IR emission. In addition, we are able to distinguish smaller, isolated enhancements that are coincident with known star-forming regions and the clustering of young stars observed in morphology maps. The level of reddening associated with the molecular ridge south of 30 Doradus is, however, smaller than in the literature reddening maps. The reduced number of galaxies detected in this region, due to high extinction and crowding, may bias our results towards lower reddening values. Our map is consistent with maps derived from red clump stars and from the analysis of the star formation history across the LMC. This study represents one of the first large-scale categorisations of extragalactic sources behind the LMC and as such we provide the lephare outputs for our full sample of ∼ 2.5 million sources. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present a map of the total intrinsic reddening across ≃34 deg2 of the Small Magellanic Cloud (SMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created using a subsample of 29 274 galaxies with low levels of intrinsic reddening based on the lephare χ2 minimization SED-fitting routine. We find statistically significant enhanced levels of reddening associated with the main body of the SMC compared with regions in the outskirts [ΔE(B − V) ≃ 0.3 mag]. A comparison with literature reddening maps of the SMC shows that, after correcting for differences in the volume of the SMC sampled, there is good agreement between our results and maps created using young stars. In contrast, we find significant discrepancies between our results and maps created using old stars or based on longer wavelength far-IR dust emission that could stem from biased samples in the former and uncertainties in the far-IR emissivity and the optical properties of the dust grains in the latter. This study represents one of the first large-scale categorizations of extragalactic sources behind the SMC and as such we provide the lephare outputs for our full sample of ∼500 000 sources. 
    more » « less
  4. Abstract We report the first 3D kinematical measurements of 88 stars in the direction of several recently discovered substructures in the southern periphery of the Large Magellanic Cloud (LMC) using a combination of Gaia proper motions and radial velocities from the APOGEE-2 survey. More specifically, we explore stars in assorted APOGEE-2 pointings in a region of the LMC periphery where various overdensities of stars have previously been identified in maps of stars from Gaia and DECam. By using a model of the LMC disk rotation, we find that a sizable fraction of the APOGEE-2 stars have extreme space velocities that are distinct from, and not a simple extension of, the LMC disk. Using N -body hydrodynamical simulations of the past dynamical evolution and interaction of the LMC and Small Magellanic Cloud (SMC), we explore whether the extreme-velocity stars may be accounted for as tidal debris created in the course of that interaction. We conclude that the combination of LMC and SMC debris produced from their interaction is a promising explanation, although we cannot rule out other possible origins, and that these new data should be used to constrain future simulations of the LMC–SMC interaction. We also conclude that many of the stars in the southern periphery of the LMC lie outside of the LMC plane by several kiloparsecs. Given that the metallicity of these stars suggests that they are likely of Magellanic origin, our results suggest that a wider exploration of the past interaction history of the Magellanic Clouds is needed. 
    more » « less

    The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and a possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.

    more » « less