skip to main content


Title: PhyloCSF++: a fast and user-friendly implementation of PhyloCSF with annotation tools
Abstract Summary

PhyloCSF++ is an efficient and parallelized C++ implementation of the popular PhyloCSF method to distinguish protein-coding and non-coding regions in a genome based on multiple sequence alignments (MSAs). It can score alignments or produce browser tracks for entire genomes in the wig file format. Additionally, PhyloCSF++ annotates coding sequences in GFF/GTF files using precomputed tracks or computes and scores MSAs on the fly with MMseqs2.

Availability and implementation

PhyloCSF++ is released under the AGPLv3 license. Binaries and source code are available at https://github.com/cpockrandt/PhyloCSFpp. The software can be installed through bioconda. A variety of tracks can be accessed through ftp://ftp.ccb.jhu.edu/pub/software/phylocsfpp/.

 
more » « less
NSF-PAR ID:
10362614
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
5
ISSN:
1367-4803
Format(s):
Medium: X Size: p. 1440-1442
Size(s):
["p. 1440-1442"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Multiple sequence alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for.

    Results

    Here, we implement a smooth and differentiable version of the Smith–Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully understood.

    Availability and implementation

    Our code and examples are available at: https://github.com/spetti/SMURF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Premise

    Robust standards to evaluate quality and completeness are lacking in eukaryotic structural genome annotation, as genome annotation software is developed using model organisms and typically lacks benchmarking to comprehensively evaluate the quality and accuracy of the final predictions. The annotation of plant genomes is particularly challenging due to their large sizes, abundant transposable elements, and variable ploidies. This study investigates the impact of genome quality, complexity, sequence read input, and method on protein‐coding gene predictions.

    Methods

    The impact of repeat masking, long‐read and short‐read inputs, and de novo and genome‐guided protein evidence was examined in the context of the popular BRAKER and MAKER workflows for five plant genomes. The annotations were benchmarked for structural traits and sequence similarity.

    Results

    Benchmarks that reflect gene structures, reciprocal similarity search alignments, and mono‐exonic/multi‐exonic gene counts provide a more complete view of annotation accuracy. Transcripts derived from RNA‐read alignments alone are not sufficient for genome annotation. Gene prediction workflows that combine evidence‐based and ab initio approaches are recommended, and a combination of short and long reads can improve genome annotation. Adding protein evidence from de novo assemblies, genome‐guided transcriptome assemblies, or full‐length proteins from OrthoDB generates more putative false positives as implemented in the current workflows. Post‐processing with functional and structural filters is highly recommended.

    Discussion

    While the annotation of non‐model plant genomes remains complex, this study provides recommendations for inputs and methodological approaches. We discuss a set of best practices to generate an optimal plant genome annotation and present a more robust set of metrics to evaluate the resulting predictions.

     
    more » « less
  3. Abstract Motivation

    The analysis of sequence conservation patterns has been widely utilized to identify functionally important (catalytic and ligand-binding) protein residues for over a half-century. Despite decades of development, on average state-of-the-art non-template-based functional residue prediction methods must predict ∼25% of a protein’s total residues to correctly identify half of the protein’s functional site residues. The overwhelming proportion of false positives results in reported ‘F-Scores’ of ∼0.3. We investigated the limits of current approaches, focusing on the so-far neglected impact of the specific choice of homologs included in multiple sequence alignments (MSAs).

    Results

    The limits of conservation-based functional residue prediction were explored by surveying the binding sites of 1023 proteins. A straightforward conservation analysis of MSAs composed of randomly selected homologs sampled from a PSI-BLAST search achieves average F-Scores of ∼0.3, a performance matching that reported by state-of-the-art methods, which often consider additional features for the prediction in a machine learning setting. Interestingly, we found that a simple combinatorial MSA sampling algorithm will in almost every case produce an MSA with an optimal set of homologs whose conservation analysis reaches average F-Scores of ∼0.6, doubling state-of-the-art performance. We also show that this is nearly at the theoretical limit of possible performance given the agreement between different binding site definitions. Additionally, we showcase the progress in this direction made by Selection of Alignment by Maximal Mutual Information (SAMMI), an information-theory-based approach to identifying biologically informative MSAs. This work highlights the importance and the unused potential of optimally composed MSAs for conservation analysis.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Background

    The pan-genome of a species is the union of the genes and non-coding sequences present in all individuals (cultivar, accessions, or strains) within that species.

    Results

    Here we introduce PGV, a reference-agnostic representation of the pan-genome of a species based on the notion of consensus ordering. Our experimental results demonstrate that PGV enables an intuitive, effective and interactive visualization of a pan-genome by providing a genome browser that can elucidate complex structural genomic variations.

    Conclusions

    The PGV software can be installed via conda or downloaded fromhttps://github.com/ucrbioinfo/PGV. The companion PGV browser athttp://pgv.cs.ucr.educan be tested using example bed tracks available from the GitHub page.

     
    more » « less
  5. Ponty, Yann (Ed.)
    Abstract Motivation Detecting subtle biologically relevant patterns in protein sequences often requires the construction of a large and accurate multiple sequence alignment (MSA). Methods for constructing MSAs are usually evaluated using benchmark alignments, which, however, typically contain very few sequences and are therefore inappropriate when dealing with large numbers of proteins. Results eCOMPASS addresses this problem using a statistical measure of relative alignment quality based on direct coupling analysis (DCA): To maintain protein structural integrity over evolutionary time, substitutions at one residue position typically result in compensating substitutions at other positions. eCOMPASS computes the statistical significance of the congruence between high scoring directly coupled pairs and 3D contacts in corresponding structures, which depends upon properly aligned homologous residues. We illustrate eCOMPASS using both simulated and real MSAs. Availability and Implementation The eCOMPASS executable, C ++ open source code and input data sets are available at https://www.igs.umaryland.edu/labs/neuwald/software/compass. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less