skip to main content


Title: Two evolved close binary stars: GALEX J015054.4+310745 and the central star of the planetary nebula Hen 2-84
ABSTRACT

As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star.

 
more » « less
NSF-PAR ID:
10362649
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2033-2039
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Fr 2-30 = PN? G126.8−15.5 is a faint emission nebula, hosting a 14th-mag central star that we identify here for the first time. Deep Hα and [O iii] images reveal a roughly elliptical nebula with dimensions of at least 22 arcmin × 14 arcmin, fading into a surrounding network of even fainter emission. Optical spectrograms of the central star show it to have a subdwarf O spectral type, with a Gaia parallax distance of 890 pc. A model-atmosphere analysis gives parameters of $T_{\rm eff}=60\, 000$ K, log g = 6.0, and a low helium content of nHe/nH = 0.0017. The location of the central star in the log g–Teff plane is inconsistent with a post-asymptotic-giant-branch evolutionary status. Two alternatives are that it is a helium-burning post-extreme-horizontal-branch object, or a hydrogen-burning post-red-giant-branch star. In either case, the evolutionary ages are so long that a detectable planetary nebula (PN) should not be present. We find evidence for a variable radial velocity (RV), suggesting that the star is a close binary. However, there are no photometric variations, and the spectral-energy distribution rules out a companion earlier than M2 V. The RVs of the star and surrounding nebula are discordant, and the nebula lacks typical PN morphology. We suggest that Fr 2-30 is a ‘PN mimic’ – the result of a chance encounter between the hot sdO star and an interstellar cloud. However, we note the puzzling fact that there are several nuclei of genuine PNe that are known to be in evolutionary states similar to that of the Fr 2-30 central star.

     
    more » « less
  2. ABSTRACT

    We present a detailed study of the barium star at the heart of the planetary nebula Abell 70. Time-series photometry obtained over a period of more than 10 yr demonstrates that the barium-contaminated companion is a rapid rotator with temporal variability due to spots. The amplitude and phasing of the photometric variability change abruptly; however, there is no evidence for a change in the rotation period (P = 2.06 d) over the course of the observations. The co-addition of 17 high-resolution spectra obtained with Ultraviolet and Visual Échelle Spectrograph mounted on the Very Large Telescope allows us to measure the physical and chemical properties of the companion, confirming it to be a chromospherically active, late G-type sub-giant with more than +1 dex of barium enhancement. We find no evidence of radial velocity variability in the spectra, obtained over the course of approximately 130 d with a single additional point some 8 yr later, with the radial velocities of all epochs approximately −10 km s −1 from the previously measured systemic velocity of the nebula. This is perhaps indicative that the binary has a relatively long period (P ≳ 2 yr) and high eccentricity (e ≳ 0.3), and that all the observations were taken around radial velocity minimum. However, unless the binary orbital plane is not aligned with the waist of the nebula or the systemic velocity of the binary is not equal to the literature value for the nebula, this would imply an unfeasibly large mass for the nebular progenitor.

     
    more » « less
  3. ABSTRACT

    We present a detailed study of the stellar and orbital parameters of the post-common envelope binary central star of the planetary nebula Ou 5. Low-resolution spectra obtained during the primary eclipse – to our knowledge the first isolated spectra of the companion to a post-common-envelope planetary nebula central star – were compared to catalogue spectra, indicating that the companion star is a late K- or early M-type dwarf. Simultaneous modelling of multiband photometry and time-resolved radial velocity measurements was then used to independently determine the parameters of both stars as well as the orbital period and inclination. The modelling indicates that the companion star is low mass (∼0.25 M⊙) and has a radius significantly larger than would be expected for its mass. Furthermore, the effective temperature and surface gravity of nebular progenitor, as derived by the modelling, do not lie on single-star post-AGB evolutionary tracks, instead being more consistent with a post-RGB evolution. However, an accurate determination of the component masses is challenging. This is principally due to the uncertainty on the locus of the spectral lines generated by the irradiation of the companion’s atmosphere by the hot primary (used to derive companion star’s radial velocities), as well as the lack of radial velocities of the primary.

     
    more » « less
  4. Abstract

    Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in Hαand UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminositylog(LX/Lbol)=5.5. Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has been proposed but for which no relic accretion or large-scale nebula remains visible. We also detect likely X-ray emission from two small regions close to the outer shock fronts in the Blue Ring Nebula, which may arise from inhomogeneities either in the circumstellar medium or in the mass and velocity distribution in the merger-driven outflow.

     
    more » « less
  5. ABSTRACT

    We present JWST images of the well-known planetary nebula NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 to 25 $\, \mu$m. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH ∼ 105–106 cm−3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. H2 in the halo may be located on the swept-up walls of a biconal polar flow. The central cavity is filled with high-ionization gas and shows two linear structures which we suggest are the edges of a biconal flow, seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features (‘spikes’) extend outward from the ring, pointing away from the central star. Hydrodynamical simulations reproduce the clumping and possibly the spikes. Around 10 low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2–M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.

     
    more » « less