skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries
Abstract

This past decade has seen extensive research in lithium-sulfur batteries with exemplary works mitigating the notorious polysulfide shuttling. However, these works utilize ether electrolytes that are highly volatile severely hindering their practicality. Here, we stabilize a rare monoclinic γ-sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. Carbonates are known to adversely react with the intermediate polysulfides and shut down Li-S batteries in first discharge. Through electrochemical characterization andpost-mortemspectroscopy/ microscopy studies on cycled cells, we demonstrate an altered redox mechanism in our cells that reversibly converts monoclinic sulfur to Li2S without the formation of intermediate polysulfides for the entire range of 4000 cycles. To the best of our knowledge, this is the first study to report the synthesis of stable γ-sulfur and its application in Li-S batteries. We hope that this striking discovery of solid-to-solid reaction will trigger new fundamental and applied research in carbonate electrolyte Li-S batteries.

 
more » « less
NSF-PAR ID:
10362671
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Chemistry
Volume:
5
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of practical lithium–sulfur (Li–S) batteries with prolonged cycle life and high Coulombic efficiency is limited by both parasitic reactions from dissolved polysulfides and mossy lithium deposition. To address these challenges, here lithium trithiocarbonate (Li2CS3)‐coated lithium sulfide (Li2S) is employed as a dual‐function cathode material to improve the cycling performance of Li–S batteries. Interestingly, at the cathode, Li2CS3forms an oligomer‐structured layer on the surface to suppress polysulfide shuttle. The presence of Li2CS3alters the conventional sulfur reaction pathway, which is supported by material characterization and density functional theory calculation. At the anode, a stable in situ solid electrolyte interphase layer with a lower Li‐ion diffusion barrier is formed on the Li‐metal surface to engender enhanced lithium plating/stripping performance upon cycling. Consequently, the obtained anode‐free full cells with Li2CS3exhibit a superior capacity retention of 51% over 125 cycles, whereas conventional Li2S cells retain only 26%. This study demonstrates that Li2CS3inclusion is an efficient strategy for designing high‐energy‐density Li–S batteries with extended cycle life.

     
    more » « less
  2. Abstract

    Despite the potential to become the next‐generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium‐metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one‐step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te‐enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode‐free Li–S batteries with only 0.1 mconcentration in conventional ether‐based electrolytes. The cell with the LiTe3additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode‐free pouch full‐cells under lean electrolyte conditions.

     
    more » « less
  3. The electrochemical behavior of sulfur-based batteries is intrinsically governed by polysulfide species. Here, we compare the substitutions of selenium and tellurium into polysulfide chains and demonstrate their beneficial impact on the chemistry of lithium–sulfur batteries. While selenium-substituted polysulfides enhance cathode utilization by effectively catalyzing the sulfur/Li 2 S conversion reactions due to the preferential formation of radical intermediates, tellurium-substituted polysulfides improve lithium cycling efficiency by reducing into a passivating interfacial layer on the lithium surface with low Li + -ion diffusion barriers. This unconventional strategy based on “molecular engineering” of polysulfides and exploiting the intrinsic polysulfide shuttle effect is validated by a ten-fold improvement in the cycle life of lean-electrolyte “anode-free” pouch cells. Assembled with no free lithium metal at the anode, the anode-free configuration maximizes the energy density, mitigates the challenges of handling thin lithium foils, and eliminates self-discharge upon cell assembly. The insights generated into the differences between selenium and tellurium chemistries can be applied to benefit a broad range of metal–chalcogen batteries as well as chalcogenide solid electrolytes. 
    more » « less
  4. Abstract

    Lithium dendrite‐induced short circuits and material loss are two major obstacles to the commercialization of lithium–sulfur (Li−S) batteries. Here, a nanocarbon composite consisting of cotton‐derived Fe3C‐encapsulated multiwalled carbon nanotubes (Fe3C‐MWCNTs) and graphene effectively traps polysulfides to suppress lithium dendrite growth is reported. Machine learning combined with molecular dynamics (MD) simulations unveils a new polysulfide‐induced lithium dendrite formation mechanism: the migration of polysulfides away from the anode drags out lithium protrusions through localized lattice distortion of the lithium anode and traps lithium ions in the surrounding electrolyte, leading to lithium dendrite formation. The Li−S battery, constructed using the composite of cotton‐derived Fe3C‐MWCNTs and graphene that serves as both the sulfur host and the anode interlayer, exhibits exceptional cycling stability, impressive capacity retention, and effective mitigation of lithium dendrite formation. The findings offer valuable strategies to prevent lithium dendrite formation and enhance understanding of lithium dendrite growth in Li−S batteries.

     
    more » « less
  5. Deducing the electrochemical activity of intermediates and providing materials solution to alter their reaction pathways holds the key for developing advanced energy storage systems such as lithium-sulfur (Li-S) batteries. Herein, we provide mechanistic perspectives of the substrate guided reaction pathways of intermediate polysulfides and their correlation to the redox activity of discharge end products using In Situ atomic force microscopy-based scanning electrochemical microscopy (AFM-SECM) coupled Raman spectroscopy at nanoscale spatiotemporal resolution. In Situ SECM intermediate detection along with Raman analysis at the electrode/electrolyte interface reveals that the precipitation of Li 2 S can occur via an electrochemically active lithium disulfide (Li 2 S 2 ) intermediate step. With a detailed spectro-electrochemical and morphological mapping, we decipher that the substrate-dependent Li 2 S 2 formation adversely affects the Li 2 S oxidation in the subsequent cycles, thereby reducing the round-trip efficiency and overall performance of the cell. The present study provides nanoscale-resolved information regarding the polysulfide reaction pathways in Li-S batteries with respect to the electrode structure and its properties. 
    more » « less