skip to main content


Title: Effects of stream restoration by legacy sediment removal and floodplain reconnection on water quality
Abstract

The effectiveness of many stream restorations in improving water quality is unmeasured. In the Mid-Atlantic region of the United States, activity by European settlers resulted in upland erosion and deposition of sediments 1–3 m in thickness in stream valleys. Subsequently, streams incised those legacy sediments creating steep, exposed banks, infrequent floodplain inundation, and water tables disconnected from floodplains. Legacy sediment removal (LSR) and floodplain reconnection (FR) proposes water quality improvement by restoration to a hydrological state closer to pre-European. We investigated water quality at nine sites, six restored with LSR/FR and three comparison sites. Nitrogen baseflow concentrations and fluxes were elevated in urban and agricultural watersheds with little apparent effect due to restoration. Denitrification appeared to be constrained by carbon availability. Ion concentrations were elevated in all watersheds compared to a forested reference and represent a substantial ecological stressor for the post-restoration aquatic community. Storm event data from one site suggest small reductions in nutrient and sediment loads across the restored reach. High-frequency time series indicate that restoration effects are not observable at larger scales. The effects of restoration, particularly for denitrification, may not be observable for years and can be obscured by weather and climate-driven variability.

 
more » « less
NSF-PAR ID:
10362708
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 035009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3) concentrations (mg/L), and N flux, both NO3and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3concentrations with Clconcentrations and specific conductance in both ground and surface waters suggested that NO3reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

     
    more » « less
  2. Freshwater salinization syndrome (FSS) refers to the suite of interactive effects of salt ions on degradation of physical, biological,and social systems. Best management practices (BMPs), which are methods to effectively reduce runoff and nonpoint source pollution (stormwater, nutrients, sediments), do not typically consider management of salt pollution. We investigate impacts of FSS on mobilization of salts, nutrients, and metals in urban streams and storm water BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic USA and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show 1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g.,similar to the way concentrations increase during other soil disturbance activities); 2) sharp declines in pH (acidification) in response to road salt applications because of mobilization of H+ from soil exchange sites by Na+; 3) sharp increases inorganic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications, likely because of lysing cells and changes insolubility; 4) substantial retention (~30–40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; 5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients(N, P), and trace metals(Cu, Sr) from stormwater BMPs and restored streams in response to FSS; 6) downstream increasing loads ofCl–, SO42–, Br–, F–,andI–along flowpaths through urbanstreams and P release from urban stormwater BMPs in response to salinization; and 7)a substantial annual reduction (>50%) in Na+concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compare our original results with published metrics of contaminant retention and release across a broad range of stormwater BMPs from North America and Europe.Overall, urban streams and stormwater BMPs consistently retain Na+ and Cl–but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater BMPs. Reducing diverse chemical cocktails of contaminants mobilized by freshwater salinization is a priority for effectively and holistically restoring urban waters. 
    more » « less
  3. Abstract

    Reservoirs along rivers have the potential to act as nutrient sinks (e.g., denitrification and sedimentation) or sources (e.g., decomposition and redox changes), potentially reducing or enhancing nutrient loads downstream. This study investigated the spatial and temporal variability of water and lakebed sediment chemistry for an agricultural reservoir, Carlyle Lake (Illinois, U.S.), to assess the role of sediments as nutrient sinks or sources. Samples were collected across the reservoir over a 2‐year period. We measured N‐ and P‐species in water at the sediment‐water interface, in sediment porewaters, and loosely bound to sediment exchange sites. Total N, total P, total C, organic matter, Fe, Mn, and grain size were measured in bulk sediments. We observed a strong gradient in sedimentary total N, total P, total C, organic matter, and metals along the reservoir, with the lowest concentrations at the river mouth and the highest concentrations near the dam. Additionally, we did a long‐term nutrient mass balance using historical water quality data for streams entering and exiting the reservoir and the reservoir itself. Mass balance calculations showed that Carlyle Lake, on average, removed 2,738 Mg N/year and released 121 Mg P/year over the multidecadal observation period. While N was consistently removed from the system over time, P was initially stored in, but later released from, the reservoir. The subsequent release of legacy P from the reservoir led to higher outgoing, compared with incoming, P loads. Thus, reservoirs in intensively managed landscapes can act as sinks for N but sources for P over decadal timescales.

     
    more » « less
  4. Abstract

    The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant.

     
    more » « less
  5. Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L−1), POC (> 250 mg L−1) and PN (> 15 mg L−1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems. 
    more » « less