skip to main content


Title: Design of soft magnetic materials
Abstract

We present a strategy for the design of ferromagnetic materials with exceptionally low magnetic hysteresis, quantified by coercivity. In this strategy, we use a micromagnetic algorithm that we have developed in previous research and which has been validated by its success in solving the “Permalloy Problem”—the well-known difficulty of predicting the composition 78.5% Ni of the lowest coercivity in the Fe–Ni system—and by the insight it provides into the “Coercivity Paradox” of W. F. Brown. Unexpectedly, the design strategy predicts that cubic materials with large saturation magnetizationmsand large magnetocrystalline anisotropy constantκ1will have low coercivity on the order of that of Permalloy, as long as the magnetostriction constantsλ100, λ111are tuned to special values. The explicit prediction for a cubic material with low coercivity is the dimensionless number$$({c}_{11}-{c}_{12}){\lambda }_{100}^{2}/(2{\kappa }_{1})=81$$(c11c12)λ1002/(2κ1)=81for 〈100〉 easy axes. The results would seem to have broad potential application, especially to magnetic materials of interest in energy research.

 
more » « less
NSF-PAR ID:
10362711
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  2. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

     
    more » « less
  3. Abstract

    The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$K0=46.9GPa with an imposed value of$${K}_{0}^{\prime}= 4$$K0=4for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$V0=322.2 Å3$$,$$,$${K}_{0}=24.8$$K0=24.8GPa and$${K}_{0}^{\prime}=4.0$$K0=4.0using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.

     
    more » « less
  4. Abstract

    Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula$${A}_{x}{A}_{1-x}^{\text{'}}{B}_{y}{B}_{1-y}^{\text{'}}{O}_{3}$$AxA1x'ByB1y'O3) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed$${A}_{x}{A}_{1-x}^{{\prime} }{B}_{y}{B}_{1-y}^{{\prime} }{O}_{3}$$AxA1xByB1yO3compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3compositions were generated in theab+aGlazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3perovskite structures using MP-compatible DFT calculations.

     
    more » « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less