skip to main content


Title: The CGM–GRB Study. II. Outflow–Galaxy Connection at z ∼ 2–6
Abstract

We use a sample of 27 gamma-ray bursts (GRBs) at redshiftz= 2–6 to probe the outflows in their respective host galaxies (log(M*/M) ∼ 9–11) and search for possible relations between the outflow properties and those of the host galaxies, such asM*, the star formation rate (SFR), and the specific SFR (sSFR). First, we consider three outflow properties: outflow column density (Nout), maximum outflow velocity (Vmax), and normalized maximum velocity (Vnorm=Vmax/Vcirc,halo, whereVcirc,halois the halo circular velocity). We observe clear trends ofNoutandVmaxwith increasing SFR in high-ion-traced outflows, with a stronger (>3σ)Vmax–SFR correlation. We find that the estimated mass outflow rate and momentum flux of the high-ion outflows scale with SFR and can be supported by the momentum imparted by star formation (supernovae and stellar winds). The kinematic correlations of high-ion-traced outflows with SFR are similar to those observed for star-forming galaxies at low redshifts. The correlations with SFR are weaker in low-ion outflows. This, along with the lower detection fraction in low-ion outflows, indicates that the outflow is primarily high-ion dominated. We also observe a strong (>3σ) trend of normalized velocity (Vnorm) decreasing with halo mass and increasing with sSFR, suggesting that outflows from low-mass halos and high-sSFR galaxies are most likely to escape and enrich the outer circumgalactic medium (CGM) and intergalactic medium with metals. By comparing the CGM–GRB stacks with those of starbursts atz∼ 2 andz∼ 0.1, we find that over a broad redshift range, the outflow strength strongly depends on the main-sequence offset at the respective redshifts, rather than simply the SFR.

 
more » « less
NSF-PAR ID:
10362712
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 63
Size(s):
["Article No. 63"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

     
    more » « less
  2. null (Ed.)
    Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics. 
    more » « less
  3. Abstract

    We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M≈ 107–109M), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(BV) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100Myr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z) and/or high ionization parameters (log(U)2.4). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${\sim } 100 \, \rm km\, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less
  5. Abstract

    We investigate galactic winds in the HizEA galaxies, a collection of 46 late-stage galaxy mergers atz= 0.4–0.8, with stellar masses oflog(M*/M)=10.411.5, star formation rates (SFRs) of 20–500Myr−1, and ultra-compact (a few 100 pc) central star-forming regions. We measure their gas kinematics using the Mgiiλλ2796,2803 absorption lines in optical spectra from MMT, Magellan, and Keck. We find evidence of outflows in 90% of targets, with maximum outflow velocities of 550–3200 km s−1. We combine these data with ten samples from the literature to construct scaling relations for outflow velocity versus SFR, star formation surface density (ΣSFR),M*, and SFR/M*. The HizEA galaxies extend the dynamic range of the scaling relations by a factor of ∼2–4 in outflow velocity and an order of magnitude in SFR and ΣSFR. The ensemble scaling relations exhibit strong correlations between outflow velocity, SFR, SFR/R, and ΣSFR, and weaker correlations withM*and SFR/M*. The HizEA galaxies are mild outliers on the SFR andM*scaling relations, but they connect smoothly with more typical star-forming galaxies on plots of outflow velocity versus SFR/Rand ΣSFR. These results provide further evidence that the HizEA galaxies’ exceptional outflow velocities are a consequence of their extreme star formation conditions rather than hidden black hole activity, and they strengthen previous claims that ΣSFRis one of the most important properties governing the velocities of galactic winds.

     
    more » « less