skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Phylogeography and population genetics reveal ring species patterns in a highly polymorphic California lily
Abstract Aim

Natural selection typically results in the homogenization of reproductive traits, reducing natural variation within populations; thus, highly polymorphic species present unresolved questions regarding the mechanisms that shape and maintain gene flow given a diversity of phenotypes. We used an integrative framework to characterize phenotypic diversity and assess how evolutionary history and population genetics affect the highly polymorphic nature of a California endemic lily.

Location

California, United States.

Taxon

Butterfly mariposa lily,Calochortus venustus(Liliaceae).

Methods

We summarized phenotypic diversity at both metapopulation and subpopulation scales to explore spatial phenotypic distributions. We sampled 174 individuals across the species range representing multiple samples for each population and each phenotype. We used restriction‐site‐associated DNA sequencing (RAD‐Seq) to detect population clusters, gene flow between phenotypes and between populations, infer haplotype networks, and reconstruct ancestral range evolution to infer historical migration and range expansion.

Results

Polymorphic floral traits within the species such as petal pigmentation and distal spots are geographically structured, and inferred evolutionary history is consistent with a ring species pattern involving a complex of populations having experienced sequential change in genetic and phenotypic variation from the founding population. Populations remain interconnected yet have differentiated from each other along a bifurcating south‐to‐north range expansion, consequently indicating parallel evolution towards the white morphotype in the northern range. Thus, our phylogeographical analyses reveal morphological convergence with population genetic cohesion irrespective of phenotypic diversity.

Main conclusions

Phenotypic variation in the highly polymorphicCalochortus venustusis not due to genetic differentiation between phenotypes; rather there is genetic cohesion within six geographically defined populations, some of which maintain a high level of within‐population phenotypic diversity. Our results demonstrate that analyses of polymorphic taxa greatly benefit from disentangling phenotype from genotype at various spatial scales. We discuss results in light of ring species concepts and the need to determine the adaptive significance of the patterns we report.

 
more » « less
Award ID(s):
1929318
PAR ID:
10362856
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
49
Issue:
2
ISSN:
0305-0270
Page Range / eLocation ID:
p. 416-430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada.

    Results

    Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’sDwas positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide.

    Conclusions

    Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.

     
    more » « less
  2. Premise

    Divergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population‐level differentiation in floral phenotype and genetic sequence variation among recently divergedCastillejato explore patterns of diversification under different scenarios of reproductive isolation.

    Methods

    Using target enrichment enabled by the Angiosperms353 probe set, we assessed genetic distance among 50 populations of fourCastillejaspecies. We investigated whether patterns of genetic divergence are explained by floral trait variation or geographic distance in two focal groups: the widespreadC. sessilifloraand the more restrictedC. purpureaspecies complex.

    Results

    We document thatC. sessilifloraand theC. purpureacomplex are characterized by high diversity in floral color across varying geographic scales. Despite phenotypic divergence, groups were not well supported in phylogenetic analyses, and little genetic differentiation was found across targeted Angiosperms353 loci. Nonetheless, a principal coordinate analysis of single nucleotide polymorphisms revealed differentiation withinC. sessilifloraacross floral morphs and geography and less differentiation among species of theC. purpureacomplex.

    Conclusions

    Patterns of genetic distance inC. sessiliflorasuggest species cohesion maintained over long distances despite variation in floral traits. In theC. purpureacomplex, divergence in floral color across narrow geographic clines may be driven by recent selection on floral color. These contrasting patterns of floral and genetic differentiation reveal that divergence can arise via multiple eco‐evolutionary paths.

     
    more » « less
  3. Summary

    Global change forecasts in ecosystems require knowledge of within‐species diversity, particularly of dominant species within communities. We assessed site‐level diversity and capacity for adaptation inBouteloua gracilis, the dominant species in the Central US shortgrass steppe biome.

    We quantified genetic diversity from 17 sites across regional scales, north to south from New Mexico to South Dakota, and local scales in northern Colorado. We also quantified phenotype and plasticity within and among sites and determined the extent to which phenotypic diversity inB. graciliswas correlated with climate.

    Genome sequencing indicated pronounced population structure at the regional scale, and local differences indicated that gene flow and/or dispersal may also be limited. Within a common environment, we found evidence of genetic divergence in biomass‐related phenotypes, plasticity, and phenotypic variance, indicating functional divergence and different adaptive potential. Phenotypes were differentiated according to climate, chiefly median Palmer Hydrological Drought Index and other aridity metrics.

    Our results indicate conclusive differences in genetic variation, phenotype, and plasticity in this species and suggest a mechanism explaining variation in shortgrass steppe community responses to global change. This analysis ofB. gracilisintraspecific diversity across spatial scales will improve conservation and management of the shortgrass steppe ecosystem in the future.

     
    more » « less
  4. Abstract Background

    Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom.

    Results

    Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition.

    Conclusions

    Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.

     
    more » « less
  5. Abstract Background

    Insecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles ofAnopheles funestusandAnopheles arabiensiswere examined across mosquito populations from and within neighbouring villages.

    Methods

    Mosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed withAnophelesmosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure.

    Results

    Phenotypic insecticide resistance to deltamethrin was observed inAn. funestussensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% ofAn. funestus s.s.wereCYP6P9ahomozygous resistant.An. arabiensiswas phenotypically susceptible to deltamethrin and 99% werekdrhomozygous susceptible. BothAnophelesspecies exhibited high allelic richness and heterozygosity. Significant deviations from Hardy–Weinberg equilibrium were observed, and high linkage disequilibrium was seen forAn. funestus s.s.,supporting population subdivision. However, the FSTvalues were low for both anophelines (− 0.00457 to 0.04213), Nmvalues were high (9.4–71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, andStructureanalysis showed no clustering ofAn. funestus s.s.andAn. arabiensispopulations. These results suggest high gene flow among mosquito populations.

    Conclusion

    Despite a relatively high level of phenotypic variation in theAn. funestuspopulation, molecular analysis shows the population is admixed. These data indicate thatCYP6P9aresistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.

     
    more » « less