skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: Neural Oscillations Reflect Meaning Identification for Novel Words in Context

During language processing, people make rapid use of contextual information to promote comprehension of upcoming words. When new words are learned implicitly, information contained in the surrounding context can provide constraints on their possible meaning. In the current study, EEG was recorded as participants listened to a series of three sentences, each containing an identical target pseudoword, with the aim of using contextual information in the surrounding language to identify a meaning representation for the novel word. In half of the trials, sentences were semantically coherent so that participants could develop a single representation for the novel word that fit all contexts. Other trials contained unrelated sentence contexts so that meaning associations were not possible. We observed greater theta band enhancement over the left hemisphere across central and posterior electrodes in response to pseudowords processed across semantically related compared to unrelated contexts. Additionally, relative alpha and beta band suppression was increased prior to pseudoword onset in trials where contextual information more readily promoted pseudoword meaning associations. Under the hypothesis that theta enhancement indexes processing demands during lexical access, the current study provides evidence for selective online memory retrieval for novel words learned implicitly in a spoken context.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1162
Date Published:
Journal Name:
Neurobiology of Language
Page Range / eLocation ID:
p. 132-148
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context. Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language. fMRI was used to record human brain activity while four subjects (two female) read words in four conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words. We then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling approach to compare the representation of semantic information across the four conditions. We find four consistent effects of varying context. First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared with stimuli with little context. Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. In individual subjects, only natural language stimuli consistently evoke widespread representation of semantic information. Third, context affects voxel semantic tuning. Finally, models estimated using stimuli with little context do not generalize well to natural language. These results show that context has large effects on the quality of neuroimaging data and on the representation of meaning in the brain. Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural regime.

    SIGNIFICANCE STATEMENTContext is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning use isolated words and isolated sentences with little context. Here, we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to natural language. We find that increasing context improves the quality of neuro-imaging data and changes where and how semantic information is represented in the brain. These results suggest that findings from studies using out-of-context stimuli may not generalize to natural language used in daily life.

    more » « less
  2. In standard models of language production or comprehension, the elements which are retrieved from memory and combined into a syntactic structure are “lemmas” or “lexical items.” Such models implicitly take a “lexicalist” approach, which assumes that lexical items store meaning, syntax, and form together, that syntactic and lexical processes are distinct, and that syntactic structure does not extend below the word level. Across the last several decades, linguistic research examining a typologically diverse set of languages has provided strong evidence against this approach. These findings suggest that syntactic processes apply both above and below the “word” level, and that both meaning and form are partially determined by the syntactic context. This has significant implications for psychological and neurological models of language processing as well as for the way that we understand different types of aphasia and other language disorders. As a consequence of the lexicalist assumptions of these models, many kinds of sentences that speakers produce and comprehend—in a variety of languages, including English—are challenging for them to account for. Here we focus on language production as a case study. In order to move away from lexicalism in psycho- and neuro-linguistics, it is not enough to simply update the syntactic representations of words or phrases; the processing algorithms involved in language production are constrained by the lexicalist representations that they operate on, and thus also need to be reimagined. We provide an overview of the arguments against lexicalism, discuss how lexicalist assumptions are represented in models of language production, and examine the types of phenomena that they struggle to account for as a consequence. We also outline what a non-lexicalist alternative might look like, as a model that does not rely on a lemma representation, but instead represents that knowledge as separate mappings between (a) meaning and syntax and (b) syntax and form, with a single integrated stage for the retrieval and assembly of syntactic structure. By moving away from lexicalist assumptions, this kind of model provides better cross-linguistic coverage and aligns better with contemporary syntactic theory.

    more » « less
  3. Because meaning can often be inferred from lexical semantics alone, word order is often a redundant cue in natural language. For example, the words chopped, chef, and onion are more likely used to convey “The chef chopped the onion,” not “The onion chopped the chef.” Recent work has shown large language models to be surprisingly word order invariant, but crucially has largely considered natural prototypical inputs, where compositional meaning mostly matches lexical expectations. To overcome this confound, we probe grammatical role representation in English BERT and GPT-2, on instances where lexical expectations are not sufficient, and word order knowledge is necessary for correct classification. Such non-prototypical instances are naturally occurring English sentences with inanimate subjects or animate objects, or sentences where we systematically swap the arguments to make sentences like “The onion chopped the chef”. We find that, while early layer embeddings are largely lexical, word order is in fact crucial in defining the later-layer representations of words in semantically non-prototypical positions. Our experiments isolate the effect of word order on the contextualization process, and highlight how models use context in the uncommon, but critical, instances where it matters. 
    more » « less
  4. Proceedings of the Sixteenth (Ed.)
    Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches. 
    more » « less
  5. Abstract

    While semantic and episodic memory have been shown to influence each other, uncertainty remains as to how this interplay occurs. We introduce a behavioral representational similarity analysis approach to assess whether semantic space can be subtly re-sculpted by episodic learning. Eighty participants learned word pairs that varied in semantic relatedness, and learning was bolstered via either testing or restudying. Next-day recall is superior for semantically related pairs, but there is a larger benefit of testing for unrelated pairs. Analyses of representational change reveal that successful recall is accompanied by a pulling together of paired associates, with cue words in semantically related (but not unrelated) pairs changing more across learning than target words. Our findings show that episodic learning is associated with systematic and asymmetrical distortions of semantic space which improve later recall by making cues more predictive of targets, reducing interference from potential lures, and establishing novel connections within pairs.

    more » « less