skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bacterial communities in carnivorous pitcher plants colonize and persist in inquiline mosquitoes
Abstract BackgroundThe leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker ofW. smithiias a ‘keystone predator’, very little is known about microbiota acquisition and assembly inW. smithiimosquitoes or the impacts ofW. smithii-microbiota interactions on mosquito and/or plant fitness. ResultsIn this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derivedW. smithiilarvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across theW. smithiilife cycle. Methods were also developed to produce axenic (microbiota-free)W. smithiilarvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity inW. smithiilarvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adultW. smithiimosquitoes. We also demonstrate the successful generation of axenicW. smithiilarvae and report variable fitness outcomes in gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field. ConclusionsThis study provides the first information on microbiota acquisition and assembly inW. smithiimosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand howW. smithii-microbiota interactions shape the structure and stability of this important model ecosystem.  more » « less
Award ID(s):
2019368
PAR ID:
10362862
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Microbiome
Volume:
4
Issue:
1
ISSN:
2524-4671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Most species of mosquitoes are detritivores that feed on decaying plant and animal materials in their aquatic environment. Studies of several detritivorous mosquito species indicate that they host relatively low diversity communities of microbes that are acquired from the environment while feeding. Our recent results also indicate that detritivorous species normally require a living gut microbiota to grow beyond the first instar. Less well known is that some mosquitoes, including those belonging to the genus Toxorhynchites , are predators that feed on other species of mosquitoes and nektonic prey. In this study, we asked whether predaceous Toxorhynchites amboinensis larvae still require living microbes in their gut in order to develop. Using the detritivorous mosquito Aedes aegypti as prey, we found that T. amboinensis larvae harbour bacterial communities that are highly similar to that of their prey. Functional assays showed that T. amboinensis first instars provided axenic (i.e. bacteria-free) prey failed to develop, while two bacterial species present in gnotobiotic (i.e. colonized by one or more known bacterial species) prey successfully colonized the T. amboinensis gut and rescued development. Axenic T. amboinensis larvae also displayed defects in growth consistent with previously identified roles for microbe-mediated gut hypoxia in nutrient acquisition and assimilation in A. aegypti. Collectively, these results support a conserved role for gut microbes in regulating the development of mosquitoes with different feeding strategies. 
    more » « less
  2. Abstract BackgroundMosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes. ResultsHere, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatustoAedes aegypti) and within (Ae. aegyptitoAe. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults. ConclusionsThis study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions. 
    more » « less
  3. Abstract Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant,Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito,Wyeomyia smithii, in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population ofS. purpureapitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem. 
    more » « less
  4. Russel, JA (Ed.)
    Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem. 
    more » « less
  5. ABSTRACT Vector mosquitoes are well‐adapted to habitats in urban areas, including belowground infrastructure such as stormwater systems. As a major source of larval habitat in population centers, control of larval populations in stormwater catch basins is an important tool for control of vector‐borne disease. Larval development and adult phenotypes driving vectorial capacity in mosquitoes are modulated by the larval gut microbiota, which is recruited from the aquatic environment in which larvae develop. Laboratory studies have quantified microbe‐mediated impacts on individual mosquito phenotypes, but more work is needed to characterise how microbiota variation shapes population‐level outcomes. Here, we evaluated the relationship between habitat microbiota variation and mosquito population dynamics by simultaneously characterising microbiota diversity, water quality, and mosquito productivity in a network of stormwater catch basins in the Chicago metropolitan area. High throughput sequencing of 16S rRNA gene amplicons from water samples collected from 60 basins over an entire mosquito breeding season detected highly diverse bacterial communities that varied with measures of water quality and over time. In situ measurements of mosquito abundance in the same basins further varied by microbiota composition and the relative abundance of specific bacterial taxa. Altogether, these results illustrate the importance of habitat microbiota in shaping ecological processes that affect mosquito populations. They also lay the foundation for future studies to characterise the mechanisms by which specific bacterial taxa impact individual and population‐level phenotypes related to mosquito vectorial capacity. 
    more » « less