skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis
Abstract Iron is essential to life, but surprisingly little is known about how iron is managed in nonvertebrate animals. In mammals, the well‐characterizedtransferrinsbind iron and are involved in iron transport or immunity, whereas other members of thetransferrinfamily do not have a role in iron homeostasis. In insects, the functions oftransferrinsare still poorly understood. The goals of this project were to identify thetransferringenes in a diverse set of insect species, resolve the evolutionary relationships among these genes, and predict which of thetransferrinsare likely to have a role in iron homeostasis. Our phylogenetic analysis oftransferrinsfrom 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insecttransferrins. Our analysis suggests thattransferrin 2arose prior to the origin of insects, andtransferrins 1,3, and4arose early in insect evolution. Primary sequence analysis of each of the insecttransferrinswas used to predict signal peptides, carboxyl‐terminal transmembrane regions, GPI‐anchors, and iron binding. Based on this analysis, we suggest thattransferrins 2,3, and4are unlikely to play a major role in iron homeostasis. In contrast, thetransferrin 1orthologs are predicted to be secreted, soluble, iron‐binding proteins. We conclude thattransferrin 1orthologs are the most likely to play an important role in iron homeostasis. Interestingly, it appears that the louse, aphid, and thrips lineages have lost thetransferrin 1gene and, thus, have evolved to manage iron withouttransferrins.  more » « less
Award ID(s):
1656388
PAR ID:
10362880
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Insect Science
Volume:
28
Issue:
2
ISSN:
1672-9609
Page Range / eLocation ID:
p. 495-508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin‐1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin.Manduca sexta(MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl‐lobe adopts a novel orientation and contacts with the amino‐lobe. The structure revealed coordination of a single Fe3+ion in the amino‐lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans. 
    more » « less
  2. Abstract Insects have evolved a chemical communication system using terpenoids, a structurally diverse class of specialized metabolites, previously thought to be exclusively produced by plants and microbes. Gene discovery, bioinformatics, and biochemical characterization of multiple insect terpene synthases (TPSs) revealed that isopentenyl diphosphate synthases (IDS), enzymes from primary isoprenoid metabolism, are their likely evolutionary progenitors. However, the mutations underlying the emergence of the TPS function remain a mystery. To address this gap, we present the first structural and mechanistic model for the evolutionary emergence of TPS function in insects. Through identifying key mechanistic differences between IDS and TPS enzymes, we hypothesize that the loss of isopentenyl diphosphate (IPP) binding motifs strongly correlates with the gain of the TPS function. Based on this premise, we have elaborated the first explicit structural definition of isopentenyl diphosphate‐binding motifs (IBMs) and used the IBM definitions to examine previously characterized insect IDSs and TPSs and to predict the functions of as yet uncharacterized insect IDSs. Consistent with our hypothesis, we observed a clear pattern of disruptive substitutions to IBMs in characterized insect TPSs. In contrast, insect IDSs maintain essential consensus residues for binding IPP. Extending our analysis, we constructed the most comprehensive phylogeny of insect IDS sequences (430 full length sequences from eight insect orders) and used IBMs to predict the function of TPSs. Based on our analysis, we infer multiple, independent TPS emergence events across the class of insects, paving the way for future gene discovery efforts. 
    more » « less
  3. Psychoactive mushrooms in the genusPsilocybehave immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species ofPsilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny ofPsilocybeusing shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage ofPsilocybearose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose inPsilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster withinPsilocybe. 
    more » « less
  4. Lemon, Katherine P (Ed.)
    ABSTRACT Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogenStaphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential inBacillus subtilisunless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential inS. aureusupon Fe deprivation. Nullfuralleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest thatfpawas recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interactedin vivo, and Fpa decreased the DNA-binding ability of Furin vitro. Fpa bound Fe(II)in vitrousing oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogenStaphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations thatS. aureususes to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, inS. aureus, alleviation requires the presence of Fpa. 
    more » « less
  5. Transferrin, a central player in iron transport, has been recognized not only for its role in binding iron but also for its interaction with other metals, including titanium. This study employs solid-state nanopores to investigate the binding of titanium ions [Ti(IV)] to transferrin in a single-molecule and label-free manner. We demonstrate the novel application of solid-state nanopores for single-molecule discrimination between apo-transferrin (metal-free) and Ti(IV)-transferrin. Despite their similar sizes, Ti(IV)-transferrin exhibits a reduced current drop, attributed to differences in translocation times and filter characteristics. Single-molecule analysis reveals Ti(IV)-transferrin’s enhanced stability and faster translocations due to its distinct conformational flexibility compared to apo-transferrin. Furthermore, our study showcases solid-state nanopores as real-time monitors of biochemical reactions, tracking the gradual conversion of apo-transferrin to Ti(IV)-transferrin upon the addition of titanium citrate. This work offers insights into Ti(IV) binding to transferrin, promising applications for single-molecule analysis and expanding our comprehension of metal–protein interactions at the molecular level. 
    more » « less