skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Estimation of Internal Climate Variability During the Preindustrial Past Millennium
Abstract We use an ensemble of simulations of a coupled model (NCAR Community Earth System Model) driven by natural radiative forcing estimates over the pre‐industrial past millennium to test the efficacy of methods designed to remove forced variability from proxy‐based climate reconstructions and estimate residual internal variability (e.g., a putative “Atlantic Multidecadal Oscillation”). Within the framework of these experiments, the forced component of surface temperature change can be estimated accurately from the ensemble mean, and the internal variability of each of the independent realizations can be accurately assessed by subtracting off that estimate. We show in this case, where the true internal variability is known, that regression‐based methods of removing the forced component from proxy reconstructions will, in the presence of uncertainties in the underlying natural radiative forcing, fail to yield accurate estimates thereof, incorrectly attributing unresolved forced features (and multidecadal spectral peaks associated with them) to internal variability.  more » « less
Award ID(s):
1748097 1748115
PAR ID:
10362910
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multidecadal sea surface temperature (SST) variations in the tropical western Pacific (TWP) have been attributed to nonlinear external forcing and remote influences from the Atlantic Multidecadal Variability (AMV). However, the AMV resulted from both internal variability (IV) and external forcing. Thus, the origins of the TWP SST variations are not well understood. By analyzing observations and model simulations, we show that more than half of the decadal to multidecadal SST variations in TWP during 1920–2020 resulted from external forcing with the forced component correlated with AMV, while the internal component is unrelated to AMV. Furthermore, about 43%–49% of the forced AMV‐like SST variations in TWP result from remote influences of the forced AMV in the Atlantic via atmospheric teleconnection over the North Pacific, with the rest from other remote or local processes. 
    more » « less
  2. Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal climate variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large scale spatial averaging. This paper demonstrates a pattern recognition method (forced pattern filtering) that extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., El Ni˜no, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El-Ni˜no-like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to effectively identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing. 
    more » « less
  3. Abstract The recent summer surface air temperature (SAT) changes over densely populated Eurasia exhibit a non‐uniform pattern with amplified warming over Europe and East Asia (EA) but weak warming over Central Asia (CA), forming a wave train‐like structure. However, the key factors that determine this non‐uniform warming pattern remain unclear. By analyzing observations and model simulations, here, we show that more than half of the SAT multidecadal variations from 1950 to 2014 over Europe‐west Asia and EA may have resulted from external forcing, rather than from internal variability in the Atlantic as previously thought. In contrast, the recent SAT over CA is influenced mainly by internal variations in the Atlantic and Pacific oceans. Large ensemble model simulations suggest that the forced SAT multidecadal variations over Eurasia are mainly caused by changes in greenhouse gases and aerosols. Our findings provide strong evidence for major impacts of external forcing on multidecadal climate variations over Eurasia. 
    more » « less
  4. Abstract Constraining unforced and forced climate variability impacts interpretations of past climate variations and predictions of future warming. However, comparing general circulation models (GCMs) and last millennium Holocene hydroclimate proxies reveals significant mismatches between simulated and reconstructed low-frequency variability at multidecadal and longer time scales. This mismatch suggests that existing simulations underestimate either external or internal drivers of climate variability. In addition, large differences arise across GCMs in both the magnitude and spatial pattern of low-frequency climate variability. Dynamical understanding of forced and unforced variability is expected to contribute to improved interpretations of paleoclimate variability. To that end, we develop a framework for fingerprinting spatiotemporal patterns of temperature variability in forced and unforced simulations. This framework relies on two frequency-dependent metrics: 1) degrees of freedom (≡N) and 2) spatial coherence. First, we useNand spatial coherence to characterize variability across a suite of both preindustrial control (unforced) and last-millennium (forced) GCM simulations. Overall, we find that, at low frequencies and when forcings are added, regional independence in the climate system decreases, reflected in fewerNand higher coherence between local and global mean surface temperature. We then present a simple three-box moist-static-energy-balance model for temperature variability, which is able to emulate key frequency-dependent behavior in the GCMs. This suggests that temperature variability in the GCM ensemble can be understood through Earth’s energy budget and downgradient energy transport, and allows us to identify sources of polar-amplified variability. Finally, we discuss insights the three-box model can provide into model-to-model GCM differences. Significance StatementForced and unforced temperature variability are poorly constrained and understood, particularly that at time scales longer than a decade. Here, we identify key differences in the time scale–dependent behavior of forced and unforced temperature variability using a combination of numerical climate models and principles of downgradient energy transport. This work, and the spatiotemporal characterizations of forced and unforced temperature variability that we generate, will aid in interpretations of proxy-based paleoclimate reconstructions and improve mechanistic understanding of variability. 
    more » « less
  5. Abstract The modern history of North Atlantic sea surface temperature shows variability coinciding with changes in air temperature and rainfall over the Northern Hemisphere. There is a debate about this variability and, in particular, whether it is internal to the ocean‐atmosphere system or is forced by external factors (natural and anthropogenic). Here we present a temperature record, obtained using the Sr/Ca ratio measured in a skeleton of a sclerosponge, that shows agreement with the instrumental record over the past 150 years as well as multidecadal temperature variability over the last 600 years. Comparison with climate simulations of the last millennium shows that large cooling events recorded, in the sclerosponge, are consistent with natural (primarily volcanic activity) and anthropogenic forcings. There are, however, multidecadal periods not connected to current estimates of external forcing over the last millennium allowing for alternative explanations, such as internally driven changes in ocean and atmospheric circulation. 
    more » « less