skip to main content


Title: In-situ transfer vat photopolymerization for transparent microfluidic device fabrication
Abstract

While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process — in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with highZ-resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization’s use in applications requiring small gaps with high accuracy in theZ-direction.

 
more » « less
NSF-PAR ID:
10362928
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    3D objects with features spanning from microscale to macroscale have various applications. However, the fabrication of such objects presents challenges to additive manufacturing (AM) due to the tradeoffs among manufacturable feature resolution, maximum build area, and printing speed. This paper presents a projection‐based AM process called hopping light vat photopolymerization (HL‐VPP) to address this critical barrier. The key idea of HL‐VPP is to synchronize linear scanning projection with a galvo mirror's rotation. The projector moves continuously at a constant speed while periodically rotating a one‐axis galvo mirror to compensate for the projector's linear movement so synchronized hopping motion can be achieved. By this means, HL‐VPP can simultaneously achieve large‐area (over 200 mm), fast‐speed (scanning speed of 13.5 mm s‐1), and high‐resolution (10 µm pixel size) fabrication. The distinguishing characteristic of HL‐VPP is that it allows for hundreds of times lower refresh rates without motion blur. Thus, HL‐VPP decouples the fabrication efficiency limit imposed by the refresh rate and will enable super‐fast curing in the future. This work will significantly advance VPP's use in applications that require macroscale part size with microscale features. The process has been verified by fabricating multiple multiscale objects, including microgrids and biomimetic structures.

     
    more » « less
  2. Nguyen, Nam-Trung ; Munoz, Rodrigo Alejandro ; Kalinke, Cristiane (Ed.)
    Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm^3 chip) that will be attractive for many microfluidics labs. 
    more » « less
  3. Abstract

    Three-dimensional (3D) printing of metal components through powder bed fusion, material extrusion, and vat photopolymerization, has attracted interest continuously. Particularly, extrusion-based and photopolymerization-based processes employ metal particle-reinforced polymer matrix composites (PMCs) as raw materials. However, the resolution for extrusion-based printing is limited by the speed-accuracy tradeoff. In contrast, photopolymerization-based processes can significantly improve the printing resolution, but the filler loading of the PMC is typically low due to the critical requirement on raw materials’ rheological properties. Herein, we develop a new metal 3D printing strategy by utilizing micro-continuous liquid interface printing (μCLIP) to print PMC resins comprising nanoporous copper (NP-Cu) powders. By balancing the need for higher filler loading and the requirements on rheological properties to enable printability for the μCLIP, the compositions of PMC resin were optimized. In detail, the concentration of the NP-Cu powders in the resins can reach up to 40 wt% without sacrificing the printability and printing speed (10 μm·s−1). After sintering, 3D copper structures with microscale features (470 ± 140 μm in diameter) manifesting an average resistivity of 150 kΩ·mm can be realized. In summary, this new strategy potentially benefits the rapid prototyping of metal components with higher resolution at faster speeds.

     
    more » « less
  4. Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers ( e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printed molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community. 
    more » « less
  5. Desktop 3D printing stereolithography (SLA) is a fabrication technique based on photopolymerization that can be used to efficiently create novel reaction devices for laboratory geochemistry with complex features (e.g. internal channels, small volumes) that are beyond the capabilities of traditional machining methods. However, the stability of 3D printed parts for low-temperature aqueous geochemical conditions has not been carefully evaluated. Furthermore, it is unclear what criteria should be used when attempting to optimize the mechanical and chemical properties during post-processing steps. Addressing these challenges is important for determining the suitability of 3D printed devices for laboratory investigations such as mineral precipitation/dissolution ex- periments. Here, we use thermogravimetric analysis (TGA) profiles, dynamic mechanical analysis (DMA), and chemical extraction of leachables to show how ultraviolet (UV) post-curing can optimize properties of a com- mercial photo-reactive resin (Formlabs Standard Clear). The mechanical and chemical stability of the post-cured material was enhanced and a working temperature of up to 80 °C was determined. We further provide data showing the stability and compatibility of the material in aqueous conditions of pH 0, 5.7 and 12. As SLA 3D printing is still an emerging and rapidly developing technology, the method presented here will provide a fra- mework for assessing how new printer types and materials (i.e. resins) impact the suitability of SLA printed devices for future experimental studies. 
    more » « less