skip to main content


Title: The season for large fires in Southern California is projected to lengthen in a changing climate
Abstract

Southern California is a biodiversity hotspot and home to over 23 million people. Over recent decades the annual wildfire area in the coastal southern California region has not significantly changed. Yet how fire regime will respond to future anthropogenic climate change remains an important question. Here, we estimate wildfire probability in southern California at station scale and daily resolution using random forest algorithms and downscaled earth system model simulations. We project that large fire days will increase from 36 days/year during 1970–1999 to 58 days/year under moderate greenhouse gas emission scenario (RCP4.5) and 71 days/year by 2070–2099 under a high emission scenario (RCP8.5). The large fire season will be more intense and have an earlier onset and delayed end. Our findings suggest that despite the lack of a contemporary trend in fire regime, projected greenhouse gas emissions will substantially increase the fire danger in southern California by 2099.

 
more » « less
NSF-PAR ID:
10362946
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is a catalyst for change, investigation of post‐fire vegetation response is critical to understanding the potential for future conversions from forest to non‐forest vegetation types. We characterized the influences of climate and terrain on post‐fire tree regeneration and assessed how these biophysical factors might shape future vulnerability to wildfire‐driven forest conversion.

    Location

    Montane forests, Rocky Mountains, USA.

    Time period

    1981–2099.

    Taxa studied

    Pinus ponderosa;Pseudotsuga menziesii.

    Methods

    We developed a database of dendrochronological samples (n = 717) and plots (n = 1,301) in post‐fire environments spanning a range of topoclimatic settings. We then used statistical models to predict annual post‐fire seedling establishment suitability and total post‐fire seedling abundance from a suite of biophysical correlates. Finally, we reconstructed recent trends in post‐fire recovery and projected future dynamics using three general circulation models (GCMs) under moderate and extreme CO2emission scenarios.

    Results

    Though growing season (April–September) precipitation during the recent period (1981–2015) was positively associated with suitability for post‐fire tree seedling establishment, future (2021–2099) trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), which is indicative of warm, dry conditions, was negatively associated with post‐fire seedling abundance during the recent period and was projected to increase throughout the southern Rocky Mountains in the future. Our findings suggest that future increases in CWD and an increased frequency of extreme drought years will substantially reduce post‐fire seedling densities.

    Main conclusions

    This study highlights the key roles of warming and drying in declining forest resilience to wildfire. Moisture stress, driven by macroclimate and topographic setting, will interact with wildfire activity to shape future vegetation patterns throughout the southern Rocky Mountains, USA.

     
    more » « less
  2. Abstract

    The increase in wildfire risk in the United States in recent decades has been linked to rapid growth of the wildland‐urban interface and to changing climate. While there have been numerous studies on wildfires and climate change, few have separately assessed the impact of climate response to land‐use‐land‐cover change (LULCC) on wildfires. In this study, we analyse two 10‐year regional climate simulations driven by the current (2011) and future (2100) land‐use‐land‐cover patterns to assess modifications by the projected LULCC to the frequency and severity of fire‐prone atmospheric conditions described by two fire weather indices, the Canadian Forest Fire Weather Index and the Hot‐Dry‐Windy Index. The simulation corresponding to future land‐use‐land‐cover pattern yields higher surface temperature and vapour pressure deficit and lower precipitation compared to the simulation with the current pattern in areas where urbanized landscapes replace forests and grasslands, such as along the Piedmont and outside the Chicagoland region, while in areas where croplands replace forests, such as the southeast Coastal Plains, the results are reversed. These changes to local and regional atmospheric conditions lead to longer fire seasons and more extreme fire‐weather conditions in much of the eastern United States, specifically in the Southeast and Ohio River Valley where significant urban expansion is projected by the end of the century. Whereas in Southern California where some highly flammable shrublands will be replaced by urban or crop lands, fire‐prone atmospheric conditions are likely to be less frequent and less extreme in the future. However, much of California moves towards a year‐round fire season under the projected LULCC. The results suggest that by altering atmospheric conditions, LULCC may play an important role in determining fire regime, but the effects are highly heterogeneous and regionalized.

     
    more » « less
  3. Abstract Background

    The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300.

    Results

    Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios.

    Conclusion

    The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.

     
    more » « less
  4. Abstract

    Climate change is altering disturbance regimes and recovery rates of forests globally. The future of these forests will depend on how climate change interacts with management activities. Forest managers are in critical need of strategies to manage the effects of climate change.

    We co‐designed forest management scenarios with forest managers and stakeholders in the Klamath ecoregion of Oregon and California, a seasonally dry forest in the Western US subject to fire disturbances. The resultant scenarios span a broad range of forest and fire management strategies. Using a mechanistic forest landscape model, we simulated the scenarios as they interacted with forest growth, succession, wildfire disturbances and climate change. We analysed the simulations to (a) understand how scenarios affected the fire regime and (b) estimate how each scenario altered potential forest composition.

    Within the simulation timeframe (85 years), the scenarios had a large influence on fire regimes, with fire rotation periods ranging from 60 years in a minimal management scenario to 180 years with an industrial forestry style management scenario. Regardless of management strategy, mega‐fires (>100,000 ha) are expected to increase in frequency, driven by stronger climate forcing and extreme fire weather.

    High elevation conifers declined across all climate and management scenarios, reflecting an imbalance between forest types, climate and disturbance. At lower elevations (<1,800 m), most scenarios maintained forest cover levels; however, the minimal intervention scenario triggered 5 × 105 ha of mixed conifer loss by the end of the century in favour of shrublands, whereas the maximal intervention scenario added an equivalent amount of mixed conifer.

    Policy implications. Forest management scenarios that expand beyond current policies—including privatization and aggressive climate adaptation—can strongly influence forest trajectories despite a climate‐enhanced fire regime. Forest management can alter forest trajectories by increasing the pace and scale of actions taken, such as fuel reduction treatments, or by limiting other actions, such as fire suppression.

     
    more » « less
  5. Abstract. Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical processes including net carbon (C) balance. Long-term monitoring and chronosequence studies highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire events. In contrast, the consequences of repeated fires or temporal variability in a fire regime (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that such variability could strongly influence forest C trajectories (i.e., future states or directions) for millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon balance. We found that C trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario (with a constant fire return interval), largely due to variability in the timing and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive and negative net ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the past several centuries to millennia.

     
    more » « less