skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel evolution of urban–rural clines in melanism in a widespread mammal
Abstract Urbanization is the dominant trend of global land use change. The replicated nature of environmental change associated with urbanization should drive parallel evolution, yet insight into the repeatability of evolutionary processes in urban areas has been limited by a lack of multi-city studies. Here we leverage community science data on coat color in > 60,000 eastern gray squirrels (Sciurus carolinensis) across 43 North American cities to test for parallel clines in melanism, a genetically based trait associated with thermoregulation and crypsis. We show the prevalence of melanism was positively associated with urbanization as measured by impervious cover. Urban–rural clines in melanism were strongest in the largest cities with extensive forest cover and weakest or absent in cities with warmer winter temperatures, where thermal selection likely limits the prevalence of melanism. Our results suggest that novel traits can evolve in a highly repeatable manner among urban areas, modified by factors intrinsic to individual cities, including their size, land cover, and climate.  more » « less
Award ID(s):
2018249
PAR ID:
10362975
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Urbanization introduces new and alters the existing hydrological processes. Projecting the direction and magnitude of change of evapotranspiration (ET), often a large existing process, in humid subtropical climates is difficult due to the lack of land‐cover specific estimates of ET. This research aims to improve our fundamental understanding of ET in urban areas by focusing on ET specific to land‐cover classes of the National Land Cover Database (NLCD). Using multiple physically based models along with ET from reference watersheds, this study estimates ET—within the Atlanta, GA, USA region—for NLCD classes. ET also is estimated for urban watersheds—both in the Atlanta region and in areas with humid subtropical climate types—for which published ET estimates exist. There are major differences in land cover among the four developed classes: high‐intensity developed land is 92% impervious surfaces, while open‐space developed land—the least intensively developed land—is only 8% impervious surfaces. Consequently, open‐space developed land has an ET total that is over four times that of high‐intensity developed land. Due to a high percentage of impervious cover and substantial evaporation of water from impervious surfaces throughout the year, there is little intra‐annual variation in ET for the high‐intensity developed class. The land‐cover ET totals aggregate to reliable estimates for urban watersheds. The largest source of uncertainty for ET estimates in urban areas is likely the evaporation magnitude associated with impervious surfaces; therefore, more work is needed in determining those magnitudes for humid subtropical climates. 
    more » « less
  2. Abstract Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest‐dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation‐by‐distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas. 
    more » « less
  3. Abstract BackgroundUrbanization can influence disease vectors by altering larval habitat, microclimates, and host abundance. The global increase in urbanization, especially in Africa, is likely to alter vector abundance and pathogen transmission. We investigated the effect of urbanization and weather on the abundance of two mosquitoes,Aedes aegyptiandAedes albopictus, and infection with dengue, chikungunya, and Zika viruses at 63 sites in six cities spanning a 900-km latitudinal range in Cameroon, Central Africa. MethodsWe used human landing catches and backpack-mounted aspirators to sample mosquitoes and collected larval habitat, host availability, and weather (temperature, precipitation, humidity) data for each site in each city. We analyzed land use and land cover information and satellite photos at varying radii around sites (100 m to 2 km) to quantify the extent of urbanization and the number of structures around each site. We used a continuous urbanization index (UI; range 0–100) that increased with impermeable surface and decreased with forest cover. ResultsUrbanization increased larval habitat, human host availability, andAe. aegyptimosquito abundance.Aedes aegyptiabundance increased 1.7% (95% CI 0.69–2.7%) with each 1 unit increase in the urbanization index in all six cities (Douala, Kribi, Yaounde, Ngaoundere, Garoua, and Maroua) with a 5.4-fold increase from UI = 0 to UI = 100, and also increased with rainfall. In contrast,Ae. albopictusabundance increased with urbanization in one city, but showed no influence of urbanization in two other cites. Across three cities,Ae. albopictusabundance increased with rainfall, temperature, and humidity. Finally, we did not detect Zika, dengue, or chikungunya viruses in any specimens, and found weak evidence of interspecific competition in analyses of adult population growth rates. ConclusionsThese results show that urbanization consistently increasesAe. aegyptiabundance across a broad range of habitats in Central Africa, while effects onAe. albopictuswere more variable and the abundance of both species were influenced by rainfall. Future urbanization of Africa will likely increaseAe. aegyptiabundance, and climate change will likely alter abundance of both species through changes in precipitation and temperature. Graphical Abstract 
    more » « less
  4. Abstract Phenotypic differences between urban and rural populations are well‐documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban–rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment. 
    more » « less
  5. Abstract Increased temperatures associated with urbanization (the “urban heat island” effect) have been shown to impact a wide range of traits across diverse taxa. At the same time, climatic conditions vary at fine spatial scales within habitats due to factors including shade from shrubs, trees, and built structures. Patches of shade may function as microclimate refugia that allow species to occur in habitats where high temperatures and/or exposure to ultraviolet radiation would otherwise be prohibitive. However, the importance of shaded microhabitats for interactions between species across urbanized landscapes remains poorly understood. Weedy plants and their foliar pathogens are a tractable system for studying how multiple scales of climatic variation influence infection prevalence. Powdery mildew pathogens are particularly well suited to this work, as these fungi can be visibly diagnosed on leaf surfaces. We studied the effects of shaded microclimates on rates of powdery mildew infection onPlantagohost species in (1) “pandemic pivot” surveys in which undergraduate students recorded shade and infection status of thousands of plants along road verges in urban and suburban residential neighborhoods, (2) monthly surveys of plant populations in 22 parks along an urbanization gradient, and (3) a manipulative field experiment directly testing the effects of shade on the growth and transmission of powdery mildew. Together, our field survey results show strong positive effects of shade on mildew infection in wildPlantagopopulations across urban, suburban, and rural habitats. Our experiment suggests that this relationship is causal, where microclimate conditions associated with shade promote pathogen growth. Overall, infection prevalence increased with urbanization despite a negative association between urbanization and tree cover at the landscape scale. These findings highlight the importance of taking microclimate heterogeneity into account when establishing links between macroclimate or land use context and prevalence of disease. 
    more » « less