Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality‐specific courtship signaling. We predicted that male
Animals often communicate in complex, heterogeneous environments, leading to hypothesized selection for increased detectability or discriminability in signaling traits. The extent to which secondary sexual ornaments have evolved to overcome the challenges of signaling in complex environments, however, remains understudied, especially in comparison to their role as indicator traits. This study tested the hypothesis that the condition-dependent secondary sexual ornamentation in the wolf spider Rabidosa rabida functions to increase detectability/discriminability in visually complex environments. We predicted that male ornamentation would interact with the complexity of the signaling environment to affect male mating success. In particular, we expected ornaments to confer a greater mating advantage when males courted in visually complex environments. To test this, we artificially manipulated male foreleg ornamentation (present/absent) and ran repeated-measures mating trials across laboratory microcosms that represented simple versus complex visual signaling environments. Microcosm visual complexity differed in their background pattern, grass stem color, and grass stem placement. We found that ornamented males mated more often and more quickly than unornamented males across both environments, but we found no support for an ornament-by-environment interaction. Male courtship rate, however, did interact with the signaling environment. Despite achieving the same level of mating success across signaling environments, ornamented males courted less rapidly in complex versus simple environments, although environmental complexity had no influence on unornamented male courtship rates. Our results suggest that the visual complexity of the signaling environment influences the interactive influence of ornamentation and dynamic visual courtship on female mate choice.
more » « less- NSF-PAR ID:
- 10362984
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Behavioral Ecology
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 1045-2249
- Page Range / eLocation ID:
- p. 307-317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Schizocosa crassipalpata (no ornamentation) rely predominantly on diet‐dependent vibratory signaling for mating success. In contrast, we predicted that maleS. bilineata (black foreleg brushes) rely on diet‐dependent visual signaling. We first tested and corroborated the sister‐species relationship betweenS. crassipalpata andS. bilineata using phylogenomic scale data. Next, we tested for species‐specific, diet‐dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet‐dependent inS. crassipalpata, while visual ornamentation (brush area) was diet‐dependent inS. bilineata . We then compared the species‐specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results forS. crassipalpata, the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success inS. bilineata, with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species. -
Introduction Evidence of animal personality and behavioral syndromes is widespread across animals, yet the development of these traits remains poorly understood. Previous research has shown that exposure to predators, heterospecifics, and urbanized environments can influence personality and behavioral syndromes. Yet, to date, the influence of early social experiences with conspecifics on the development of adult behavioral traits is far less known. We use swordtail fish ( Xiphophorus nigrensis ), a species with three genetically-determined male mating strategies (courtship display, coercion, or mixed strategy) to assess how different early-life social experiences shape adult behavioral development. Methods We raised female swordtails from birth to adulthood in density-controlled sexual-social treatments that varied in the presence of the type of male mating tactics (coercers only, displayers only, coercers and displayers, and mixed-strategists only). At adulthood, we tested females’ boldness, shyness, aggression, sociality, and activity. Results We found that the number of different mating strategies females were raised with (social complexity) shaped behavioral development more than any individual mating strategy. Females reared in complex environments with two male mating tactics were bolder, less shy, and less aggressive than females reared with a single male mating tactic (either courtship only or coercion only). Complex sexual-social environments produced females with behavioral syndromes (correlations between aggression and activity, shyness and aggression, and social interaction and activity), whereas simple environments did not. Discussion Importantly, the characteristics of these socially-induced behavioral syndromes differ from those driven by predation, but converge on characteristics emerging from animals found in urban environments. Our findings suggest that complexity of the sexual-social environment shapes the development of personality and behavioral syndromes to facilitate social information gathering. Furthermore, our research highlights the previously overlooked influence of sexual selection as a significant contributing factor to diverse behavioral development.more » « less
-
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCEmore » « less
-
Jennions, Michael D (Ed.)Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behavior of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways.more » « less
-
Abstract Exposure to multiple environmental stressors is a common occurrence that can affect organisms in predictable or unpredictable ways. Hypoxia and turbidity in aquatic environments are 2 stressors that can affect reproductive behaviors by altering energy availability and the visual environment, respectively. Here we examine the relative effects of population and the rearing environment (oxygen concentration and turbidity) on reproductive behaviors. We reared cichlid fish (the Egyptian mouthbrooder, Pseudocrenilabrus multicolor) from 2 populations (a swamp and river) until sexual maturity, in a full factorial design (hypoxic/normoxic × clear/turbid) and then quantified male competitive and courtship behaviors and female preference under their respective rearing conditions. Overall, we found that the rearing environment was more important than population for determining behavior, indicating there were few heritable differences in reproductive behavior between the 2 populations. Unexpectedly, males in the hypoxic rearing treatment performed more competitive and courtship behaviors. Under turbid conditions, males performed fewer competitive and courtship behaviors. We predicted that females would prefer males from their own population. However, under the hypoxic and turbid combination females from both populations preferred males from the other population. Our results suggest that reproductive behaviors are affected by interactions among male traits, female preferences, and environmental conditions.