skip to main content


Title: Racism, sexism and disconnection: contrasting experiences of Black women in STEM before and after transfer from community college
Abstract Background

Repeated calls to diversify the population of students earning undergraduate degrees in science, technology, engineering, and mathematics (STEM) fields have noted the greater diversity of community college students and their potential to thus have an impact on the racial/ethnic composition of 4-year degree earners. In this paper, we investigate barriers and supports to Black women’s success in STEM, using longitudinal interview data with seven Black women who were enrolled at community colleges and stated an interest in majoring in STEM at 4-year institutions.

Results

Our findings highlight a contrast between community colleges and universities. At community colleges, Black women were able to form supportive relationships with professors and peers, downplayed the potential of racism and sexism to derail their STEM ambitions, and saw little to no impact of bias on their educational experiences. Those students who transferred characterized university climates very differently, as they struggled to form supportive relationships and experienced racism and sexism from professors and peers.

Conclusions

We conclude using Patricia Hill Collins’ Domains of Power framework to categorize students’ experiences, then end with recommendations for change that will result in less alienating experiences for Black women, among other minoritized students.

 
more » « less
NSF-PAR ID:
10363002
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
9
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Even though Historically Black College and Universities (HBCUs) make up only 3% of higher education's institutions, they play a pivotal role in producing Black scientists by virtue of the fact that many received either their undergraduate or doctorate degree from a HBCU. HBCUs are credited with providing a more supportive and nurturing environment that thrives on communal mindsets and practices, emphasizing the importance of relationships, offering opportunities for Black students to "see themselves" as part of the academic and social milieu whereas Historically White Institutions (HWIS) are characterized as being hostile and discriminatory. Mentoring is said to be pivotal in the attainment of the PhD. Mentorships have an inherent gatekeeping mechanism, better positioning those who receive effective mentorships while disadvantaging those who do not. It has potential to harm and marginalize when not engaged with deliberate care and a culturally liberative mindset. Mentoring, when not under the thumb of colonizing mindsets, can contribute to more equitable experiences and outcomes for students who hail from AGEP population groups. Literature has indicated that Black students are less likely to have a mentor or be engaged in effective mentorships. The HBCU narrative of supportive environment is consistently told but has scant empirical validation for Black students pursuing STEM doctoral degrees. In fact, the lure of having faculty and peers who look like you is something of an enigma given that even at HBCUs there are limited numbers of Black faculty in STEM. How are same race, same gender mentorships attained when, not unlike their HWIS counterparts, HBCU STEM faculties have a large number of White and Asian men? If the environment is indeed different at HBCUs, is it different for Black STEM doctoral students? Is STEM doctoral mentoring at HBCUs emblematic of anti-Blackness or is it yet another tool used to oppress marginalized students? Theoretical Framework: Anti-black racism and critical capital theory serve as critical theoretical frameworks and were selected because they highlight the ways violence is enacted through taken for granted colonized practices such as mentoring. Fanon understood that thoughts and mindsets are the progenitors of violence and dehumanization is the process through which violence is enacted. Anti-black racism and critical capital theory can be useful in unearthing the structural inequalities that uphold the current system in place for STEM doctoral learning. Research Design: An embedded multiple qualitative case study research project sought to understand the nature and quality of STEM doctoral mentorships at an HBCU. The analysis on the HBCU subcase asked, how are STEM doctoral mentorships understood by Black STEM doctoral students at HBCUs? Black STEM HBCU students were interviewed and completed a mentoring competency assessment survey. In addition STEM doctoral students from three universities also completed the survey. The qualitative data was analyzed using narrative analysis and the survey data was analyzed using descriptive and inferential statistics. This project is part of a larger NSF AGEP sponsored research study. Research findings: The findings from this study expose that Black STEM doctoral students at HBCUs have not reached the proverbial Promise Land. In spite of being in a space that is more diverse, they manage to simultaneously be invisible and hypervisible. An unmerited sense of assumed cultural belonging was highlighted with students reporting a lack of selfethnic reflectors in their programs. In many ways the systemic and institutional structures on HBCUs with respect to STEM doctoral programming mirrored the colonial structures more often associated with HWIS. Their culture and cultural-based experiences as domestic students as well as their academic strengths were often not recognized by mentors while that of international students were. Three themes were supported by the data: Conspicuous Absence, Race Still Matters, and Invisibilized Hypervisibility. Implications: Better understanding how STEM doctoral mentoring is facilitated at HBCUs holds the promise of informing a mentoring practice that supports cultural liberation instead of cultural degradation and suppression. It becomes one avenue as the “The Call'' suggests to "confront our own complicity in the colonial enterprise" by holding STEM doctoral mentors and the institutions they represent accountable for socially just mentoring practices. Greater intentionality as well as mandated training informed by the study's results are recommended. HBCU faculty doctoral mentors are challenged to be scholar activists who engage mentoring from an advocacy and accomplice framework. The development of STEM scholar activists is the aspiration of more culturally liberative STEM doctoral mentorships. Black students need mentors who are willing and equipped to be advocates and accomplices in their success. 
    more » « less
  2. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  3. This qualitative study examines how race/ethnicity and gender influence the transformation of student-faculty relationships into valued forms of social capital for students career-related opportunities career opportunities within Science, Technology, Mathematics, and Engineering (STEM) contexts. Through retrospective interviews with 40 STEM graduates, the data revealed: (1) that experiences of racism and sexism among women of color affected their ability to attend office hours and build strong relationships with professors; (2) that while White females experienced sexism from faculty, their White privilege lessened the negative effects associated with their gender; (3) that being exposed to diverse faculty facilitated conversations between female students and students of color and their professors about their career pathways; and (4) that the negative influence of race/ethnicity and gender on student-faculty relationships was alleviated, but not eliminated, through research engagement. 
    more » « less
  4. Abstract Background

    Engineering education has observed considerable growth in academic makerspaces with initial data indicating significant potential for makerspaces to support learning.

    Purpose/Hypothesis

    Given gender disparities in engineering as a professional community of practice (CoP) and indications for makerspaces as sites for learning, educational researchers need to forge a better understanding of women's pathways into makerspaces, including the barriers that inhibit and the catalysts that broaden participation.

    Design/Method

    This study employed qualitative interviews with 20 women students who were identified as makers in order to gain insights into the characteristics of their pathways into university makerspaces.

    Results

    Using grounded theory development, four major aspects of students' pathways emerged: (1) early forms of apprenticeship through mentors; (2) overcoming and resisting limiting gendered expectations imposed by others in early experiences in unfamiliar makerspace CoPs, resulting in failed articulations of related communities; (3) successful articulations of community grounded in making‐centered coursework and personal passions; and (4) relationships in college that expanded access, leadership, and visibility toward fuller participation in makerspace CoPs.

    Conclusion

    Educational interventions to broaden women's participation in makerspaces must be multipronged and attend to early childhood experiences, include supportive opportunities for women to participate in making in K‐12 and university curricula, expand definitions of making to legitimize the arts and crafts as part of design, and create apprenticeship opportunities for women to mentor women in makerspaces. We must change the narrative of who makers are, what making is, and who belongs in makerspaces to reduce barriers and create inclusive making communities.

     
    more » « less
  5. In this work-in-progress paper we present emergent recruitment issues encountered during an ongoing design-based project with participants from two-year colleges for an NSF-funded scholarship program. Our hope is to connect with researchers who have previously explored similar issues or may be experiencing them in their current work. Student Pathways in Engineering and Computing for Transfer Students (SPECTRA) is an NSF S-STEM program that provides financial assistance to students transferring from the South Carolina Technical College System into Engineering or Computing majors at Clemson University [1]. SPECTRA also assists students by connecting them with peers at the technical colleges who move together through the transfer process to Clemson and are supported by the SPECTRA program until graduation. In addition to exploring the experiences of current SPECTRA participants, we investigate how the project can be scaled to include more students and sustained after NSF support ends. The 2021-2022 academic year is the third of the five-year program, although, given emergent recruitment issues, we foresee application for a no-cost extension. The primary concern is the low number of students currently supported in comparison to our goals, highlighting recruitment for further examination. We planned to support up to twenty students in year 1, 52 students in year 2, 70 students in year 3, but our actual numbers in the first three years are 7, 12, and 28 students. Given this trend, our concern over how we recruit students into SPECTRA is now at the forefront of our work. The program is not reaching those students who are eligible, and low recruitment has limited the quality of research needed to inform the construction of a sustainable program. To explore recruitment, we have added interviews with potential students at the technical colleges. In addition to this interview process, we have reviewed our internal practices, analysed existing public information and social media from similar programs, and reviewed existing literature from related research and practice. We identified aspects that may have impacted our current situation. The first was explicit, being the impact of COVID-19 on our ability to hold in-person recruitment events. Similar to studies that have identified other COVID-19 impacts to two-year institutions such as “retention rates declined the most in the community college sector (-2.1 pp to 51.6%)” [2], “disparities in upward transfer mobility increased during the pandemic year” [3], and community colleges being hit hardest “with a 9.4 percent decline” in enrollment [4], we intend to further clarify the influence of COVID-19 on our context. COVID-19 also played a role with regard to the need for scholarship funds, as one of the technical colleges in our program used federal relief funds to provide free tuition for all students during the 2020-2021 academic year. Another potential impact is the effectiveness of the SPECTRA webpages and other online materials to meet the needs of potential students considering the program. In this work-in-progress paper, we will share how we are addressing recruitment issues and how new interventions are impacting recruitment. 
    more » « less