skip to main content


Title: Social behavior mediates the use of social and personal information in wild jays
Abstract

The factors favoring the evolution of certain cognitive abilities in animals remain unclear. Social learning is a cognitive ability that reduces the cost of acquiring personal information and forms the foundation for cultural behavior. Theory predicts the evolutionary pressures to evolve social learning should be greater in more social species. However, research testing this theory has primarily occurred in captivity, where artificial environments can affect performance and yield conflicting results. We compared the use of social and personal information, and the social learning mechanisms used by wild, asocial California scrub-jays and social Mexican jays. We trained demonstrators to solve one door on a multi-door task, then measured the behavior of naïve conspecifics towards the task. If social learning occurs, observations of demonstrators will change the rate that naïve individuals interact with each door. We found both species socially learned, though personal information had a much greater effect on behavior in the asocial species while social information was more important for the social species. Additionally, both species used social information to avoid, rather than copy, conspecifics. Our findings demonstrate that while complex social group structures may be unnecessary for the evolution of social learning, it does affect the use of social versus personal information.

 
more » « less
NSF-PAR ID:
10363056
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rétaux, Sylvie (Ed.)
    Fish display a remarkable diversity of social behaviors, both within and between species. While social behaviors are likely critical for survival, surprisingly little is known about how they evolve in response to changing environmental pressures. With its highly social surface form and multiple populations of a largely asocial, blind, cave-dwelling form, the Mexican tetra, Astyanax mexicanus , provides a powerful model to study the evolution of social behavior. Here we use motion tracking and analysis of swimming kinematics to quantify social swimming in four Astyanax mexicanus populations. In the light, surface fish school, maintaining both close proximity and alignment with each other. In the dark, surface fish no longer form coherent schools, however, they still show evidence of an attempt to align and maintain proximity when they find themselves near another fish. In contrast, cavefish from three independently-evolved populations (Pachón, Molino, Tinaja) show little preference for proximity or alignment, instead exhibiting behaviors that suggest active avoidance of each other. Two of the three cave populations we studied also slow down when more fish are present in the tank, a behavior which is not observed in surface fish in light or the dark, suggesting divergent responses to conspecifics. Using data-driven computer simulations, we show that the observed reduction in swimming speed is sufficient to alter the way fish explore their environment: it can increase time spent exploring away from the walls. Thus, the absence of schooling in cavefish is not merely a consequence of their inability to see, but may rather be a genuine behavioral adaptation that impacts the way they explore their environment. 
    more » « less
  2. When observing others’ behavior, people use Theory of Mind to infer unobservable beliefs, desires, and intentions. And when showing what activity one is doing, people will modify their behavior in order to facilitate more accurate interpretation and learning by an observer. Here, we present a novel model of how demonstrators act and observers interpret demonstrations corresponding to different levels of recursive social reasoning (i.e. a cognitive hierarchy) grounded in Theory of Mind. Our model can explain how demonstrators show others how to perform a task and makes predictions about how sophisticated observers can reason about communicative intentions. Additionally, we report an experiment that tests (1) how well an observer can learn from demonstrations that were produced with the intent to communicate, and (2) how an observer’s interpretation of demonstrations influences their judgments. 
    more » « less
  3. Natural selection has evidently mediated many species characteristics relevant to the evolution of learning, including longevity, length of the juvenile period, social organization, timing of cognitive and motor development, and age-related shifts in behavioural propensities such as activity level, flexibility in problem-solving and motivation to seek new information. Longitudinal studies of wild populations can document such changes in behavioural propensities, providing critical information about the contexts in which learning strategies develop, in environments similar to those in which learning strategies evolved. The Lomas Barbudal Monkey Project provides developmental data for the white-faced capuchin, Cebus capucinus , a species that has converged with humans regarding many life-history and behavioural characteristics. In this dataset, focused primarily on learned aspects of foraging behaviour, younger capuchins are more active overall, more curious and opportunistic, and more prone to inventing new investigative and foraging-related behaviours. Younger individuals more often seek social information by watching other foragers (especially older foragers). Younger individuals are more creative, playful and inventive, and less neophobic, exhibiting a wider range of behaviours when engaged in extractive foraging. Whereas adults more often stick with old solutions, younger individuals often incorporate recently acquired experience (both social and asocial) when foraging. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'. 
    more » « less
  4. Social learning is a primary mechanism for information acquisition in social species. Despite many benefits, social learning may be disadvantageous when independent learning is more efficient. For example, searching independently may be more advantageous when food sources are ephemeral and unpredictable. Individual differences in cognitive abilities can also be expected to influence social information use. Specifically, better spatial memory can make a given environment more predictable for an individual by allowing it to better track food sources. We investigated how resident food-caching chickadees discovered multiple novel food sources in both harsher, less predictable high elevation and milder, more predictable low elevation winter environments. Chickadees at high elevation were faster at discovering multiple novel food sources and discovered more food sources than birds at low elevation. While birds at both elevations used social information, the contribution of social learning to food discovery was significantly lower at high elevation. At both elevations, chickadees with better spatial cognitive flexibility were slower at discovering food sources, likely because birds with lower spatial cognitive flexibility are worse at tracking natural resources and therefore spend more time exploring. Overall, our study supported the prediction that harsh environments should favour less reliance on social learning. 
    more » « less
  5. Vieira, Marcus (Ed.)
    Abstract Basic knowledge of species biology and ecology is essential for the assessment of species conservation status and planning for efficient conservation strategies; however, this information is not always readily available. Here we use movement behavior to understand the ecology and social biology of the poorly known southern three-banded armadillo (Tolypeutes matacus). We used VHF and GPS telemetry to monitor 26 individuals from two sites in the Pantanal wetlands of Brazil. We characterized armadillo activity patterns, evaluated the relationship between sex and body mass with home range size and mean daily distance traveled, and examined home and core range overlap. Three-banded armadillos were active on average for 5.5 ± 2.8 h/day, with most of their activity concentrated in the first half of the night. Adult males were heavier and had larger home ranges than adult females. Home range size scaled positively with body mass for males, but not for females. Core ranges for females overlapped little (< 1%) regardless of age, but home ranges for males overlapped both with other males (12%) and females (18%). Our data suggest that three-banded armadillos are mainly a nocturnal species. Home range and spacing patterns point to a generally asocial behavior and a polygynous or promiscuous mating system. We hope that the data generated as a result of this project will contribute to this species’ conservation in Brazil and elsewhere by guiding future management and research efforts. 
    more » « less