skip to main content


Title: In-plasma photo-assisted etching of Si with chlorine aided by an external vacuum ultraviolet source

Photo-assisted etching of p-type Si was previously found to occur in a chlorine-containing, Faraday-shielded, inductively coupled plasma (ICP), and this was attributed to the vacuum ultraviolet (VUV) light generated by the plasma. Other causes for the very high etching rates were ruled out, including ion bombardment. In the present study, the substrate in the main Cl2/Ar ICP was subjected to extra VUV light that was generated in an independently controlled, auxiliary Ar/He ICP in tandem with the main ICP. The ICPs were separated by a tungsten mesh and a bundle of high-aspect-ratio quartz tubes in a honeycomb configuration. There was no measurable perturbation of the main plasma by the auxiliary plasma. The etching rate was found to be enhanced by 11%–51% with the additional VUV light provided by the auxiliary ICP. With absolute measurements of the auxiliary ICP photon flux at the sample surface, as described elsewhere, incredibly large etching yields of 90–240 Si atoms per photon were obtained. It is argued that etching is not a result of electron–hole pair formation but is instead ascribed to a photocatalytic chain reaction.

 
more » « less
PAR ID:
10363080
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
40
Issue:
2
ISSN:
2166-2746
Page Range / eLocation ID:
Article No. 022207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new method for absolute measurement of the vacuum ultraviolet (VUV) photon flux at the edge of a plasma is described. The light produced by the plasma was allowed to strike a negatively biased, gold-coated copper substrate remote from the plasma. The resulting photoelectron emission current was measured, and the absolute photon flux was then found from the known photoelectron yield of Au. The method was used to quantify the amount of VUV light produced by an Ar/He inductively coupled plasma (ICP). Strong emissions at 104.82 and 106.67 nm, corresponding to the 1s2and 1s4resonant states of Ar, were observed. The maximum, integrated VUV photon flux measured at the remote location was 3.2 × 1013 photons/cm2 s. This was estimated to correspond to a flux of 5 × 1015 photons/cm2 s at the edge of the ICP, in the range of reported values under similar conditions.

     
    more » « less
  2. We report a two-step etching process involving inductively coupled plasma (ICP) etching followed by wet chemical etching to achieve smooth and vertical sidewalls, being beneficial for AlGaN-based electronic and optoelectronic devices. The influence of ICP power on the roughness of etched sidewalls is investigated. It is observed that ICP etching alone does not produce smooth sidewalls, necessitating subsequent wet chemical etching using tetramethyl ammonium hydroxide (TMAH) to enhance sidewall smoothness and reduce tilt angle. The morphological evolution of the etched sidewalls with wet etch time for the device structures is also thoroughly investigated. Consistent etch results are achieved for AlxGa1-xN alloys with Al compositions up to 70%, indicating the effectiveness of our etching process.

     
    more » « less
  3. Miniaturized photoionization detectors (PIDs) are used in conjunction with gas chromatography systems to detect volatile compounds in gases by collecting the current from the photoionized gas analytes. PIDs should be inexpensive and compatible with a wide range of analyte species. One such PID is based on the formation of a He plasma in a dielectric barrier discharge (DBD), which generates vacuum UV (VUV) photons from excited states of He to photoionize gas analytes. There are several design parameters that can be leveraged to increase the ionizing photon flux to gas analytes to increase the sensitivity of the PID. To that end, the methods to maximize the photon flux from a pulsed He plasma in a DBD-PID were investigated using a two-dimensional plasma hydrodynamics model. The ionizing photon flux originated from the resonance states of helium, He(3P) and He(21P), and from the dimer excimer He2*. While the photon flux from the resonant states was modulated over the voltage pulse, the photon flux from He2* persisted long after the voltage pulse passed. Several geometrical optimizations were investigated, such as using an array of pointed electrodes. However, increasing the capacitance of the dielectric enclosing the plasma chamber had the largest effect on increasing the VUV photon fluence to gas analytes.

     
    more » « less
  4. Abstract

    We report bias enhanced nucleation and growth of boron-rich deposits through systematic study of the effect of a negative direct current substrate bias during microwave plasma chemical vapor deposition. The current flowing through a silicon substrate with an applied bias of −250 V was investigated for a feedgas containing fixed hydrogen (H2) flow rate but with varying argon (Ar) flow rates for 1330, 2670, and 4000 Pa chamber pressure. For 1330 and 2670 Pa, the bias current goes through a maximum with increasing Ar flow rate. This maximum current also corresponds to a peak in substrate temperature. However, at 4000 Pa, no maximum in bias current or substrate temperature is observed for the range of argon flow rates tested. Using these results, substrate bias pre-treatment experiments were performed at 1330 Pa in an Ar/H2plasma, yielding the maximum bias current. Nucleation density of boron deposits were measured after subsequent exposure to B2H6in H2plasma and found to be a factor of 200 times higher than when no bias and no Ar was used. Experiments were repeated at 2670 and 4000 Pa (fixed bias voltage and Ar flow rate) in order to test the effect of chamber pressure on the nucleation density. Compared to 4000 Pa, we find nearly 7 times higher boron nucleation densities for both 1330 and 2670 Pa when the substrate was negatively biased in the Ar/H2plasma. Results are explained by incorporating measurements of plasma optical emission and by use of heterogeneous nucleation theory. The optimal conditions at 1330 Pa for nucleation were used to grow boron-rich amorphous films with measured hardness as high as 58 GPa, well above the 40 GPa threshold for superhardness.

     
    more » « less
  5. Abstract

    Ion bombardment of photoresist materials during plasma etching results in the formation of a surface dense amorphous carbon (DAC) layer that contributes to both etch resistance and the development of surface roughness. Real‐time ellipsometric measurements/analysis reveals that a C4F8‐containing plasma interacts with an Ar‐plasma‐formed DAC layer to produce a modified DAC/fluorocarbon (FC) layer by FC deposition/diffusion of fluorine into the surface. The depletion of the DAC layer via modification and ion bombardment causes the etch rate of the bulk layer to increase. As the modified surface layer is formed, a noticeable decrease in surface roughness decrease is observed. These findings provide an understanding of the mechanisms of atomic layer etching processes in photoresist materials.

     
    more » « less