skip to main content


Title: Landscape genomics of the streamside salamander: Implications for species management in the face of environmental change
Abstract

Understanding spatial patterns of genetic differentiation and local adaptation is critical in a period of rapid environmental change. Climate change and anthropogenic development have led to population declines and shifting geographic distributions in numerous species. The streamside salamander,Ambystoma barbouri, is an endemic amphibian with a small geographic range that predominantly inhabits small, ephemeral streams. AsAbarbouriis listed as near‐threatened by the IUCN, we describe range‐wide patterns of genetic differentiation and adaptation to assess the species’ potential to respond to environmental change. We use outlier scans and genetic‐environment association analyses to identify genomic variation putatively underlying local adaptation across the species’ geographic range. We find evidence for adaptation with a polygenic architecture and a set of candidate SNPs that identify genes putatively contributing to local adaptation. Our results build on earlier work that suggests that someA. barbouripopulations are locally adapted despite evidence for asymmetric gene flow between the range core and periphery. Taken together, the body of work describing the evolutionary genetics of range limits inA. barbourisuggests that the species may be unlikely to respond naturally to environmental challenges through a range shift orin situadaptation. We suggest that management efforts such as assisted migration may be necessary in future.

 
more » « less
NSF-PAR ID:
10363103
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
15
Issue:
2
ISSN:
1752-4571
Format(s):
Medium: X Size: p. 220-236
Size(s):
["p. 220-236"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Context

    Processes that shape genomic and ecological divergence can reveal important evolutionary dynamics to inform the conservation of threatened species.Fontaineais a genus of rainforest shrubs and small trees including critically endangered and threatened species restricted to narrow, but complex geographic and ecological regions. Several species ofFontaineaare subject to spatially explicit conditions and experience limited intra-specific gene flow, likely generating genetic differentiation and local adaptation.

    Objectives

    Here, we explored the genetic and ecological mechanisms underlying patterns of diversification in two, closely related threatenedFontaineaspecies. Our aim was to compare spatial patterns of genetic variation between the vulnerableFontainea australis(Southern Fontainea) and critically endangeredF. oraria(Coastal Fontainea), endemic to the heterogeneous subtropical region of central, eastern Australia, where large-scale clearing has severely reduced rainforest habitat to a fraction (< 1%) of its pre-European settlement extent.

    Methods

    We used a set of 10,000 reduced-representation markers to infer genetic relationships and the drivers of spatial genetic variation across the two species. In addition, we employed a combination of univariate and multivariate genome-environment association analysis using a set of topo-climatic variables to explore potential patterns of local adaptation as a factor impacting genomic divergence.

    Results

    Our study revealed that Coastal Fontainea have a close genetic relationship with Southern Fontainea. We showed that isolation by distance has played a key role in their genetic variation, indicating that vicariance can explain the spatial genetic distribution of the two species. Genotype-environment analyses showed a strong association with temperature and topographic features, suggesting adaptation to localised thermal environments. We used a multivariate redundancy analysis to identify a range of putatively adapted loci associated with local environmental conditions.

    Conclusions

    Divergent selection at the local-habitat scale as a result of dispersal limitations and environmental heterogeneity (including physical barriers) are likely contributors to adaptive divergence between the twoFontaineaspecies. Our findings have presented evidence to indicate that Southern and Coastal Fontainea were comprised of distinct genetic groups and ecotypes, that together may form a single species continuum, with further phenotype research suggested to confirm the current species boundaries. Proactive conservation actions, including assisted migration to enhance the resilience of populations lacking stress-tolerant single nucleotide polymorphisms (SNPs) may be required to secure the long-term future of both taxa. This is especially vital for the critically endangered Coastal Fontainea given projections of habitat decline for the species under future climate scenarios.

     
    more » « less
  2. Abstract

    Understanding how the environment shapes genetic variation provides critical insight about the evolution of local adaptation in natural populations. At multiple spatial scales and multiple geographic contexts within a single species, such information could address a number of fundamental questions about the scale of local adaptation and whether or not the same loci are involved at different spatial scales or geographic contexts. We used landscape genomic approaches from three local elevational transects and rangewide sampling to (a) identify genetic variation underlying local adaptation to environmental gradients in the California endemic oak,Quercus lobata; (b) examine whether putatively adaptive SNPs show signatures of selection at multiple spatial scales; and (c) map putatively adaptive variation to assess the scale and pattern of local adaptation. Of over 10 k single‐nucleotide polymorphisms (SNPs) generated with genotyping‐by‐sequencing, we found signatures of natural selection by climate or local environment at over 600 SNPs (536 loci), some at multiple spatial scales across multiple analyses. Candidate SNPs identified with gene–environment tests (LFMM) at the rangewide scale also showed elevated associations with climate variables compared to the background at both rangewide and elevational transect scales with gradient forest analysis. Some loci overlap with those detected in other oak species, raising the question of whether the same loci might be involved in local climate adaptation in different congeneric species that inhabit different geographic contexts. Mapping landscape patterns of adaptive versus background genetic variation identified regions of marked local adaptation and suggests nonlinear association of candidate SNPs and environmental variables. Taken together, our results offer robust evidence for novel candidate genes for local climate adaptation at multiple spatial scales.

     
    more » « less
  3. Abstract

    Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species’ geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species’ adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine‐scale (2–12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three‐way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home‐site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local‐scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range‐center eelgrass population that is pre‐adapted to extremely warm temperatures similar to those experienced by low‐latitude range‐edge populations of eelgrass, demonstrating how reservoirs of heat‐tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local‐scale population differentiation and promote a phenotypic management approach to species conservation.

     
    more » « less
  4. Abstract

    Understanding mechanisms that underlie species range limits is at the core of evolutionary ecology. Asymmetric gene flow between larger core populations and smaller edge populations can swamp local adaptation at the range edge and inhibit further range expansion. However, empirical tests of this theory are exceedingly rare. We tested the hypothesis that asymmetric gene flow can constrain local adaptation and thereby species’ range limits in an endemic US salamander (Ambystoma barbouri) by determining if gene flow is asymmetric between the core and peripheries of the species’ geographic distribution and testing whether local adaptation is swamped at range edges with a reciprocal transplant experiment. Using putatively neutral loci from populations across three core‐to‐edge transects that covered nearly the entire species’ geographic range, we found evidence for asymmetric, core‐to‐edge gene flow along western and northern transects, but not along a southern transect. Subsequently, the reciprocal transplant experiment suggested that northern and western edge populations are locally adapted despite experiencing asymmetric gene flow, yet have lower fitness in their respective home regions than those of centre population. Conversely, southern populations exhibit low deme quality, experiencing high mortality regardless of where they were reared, probably due to harsher edge habitat conditions. Consequently, we provide rare species‐wide evidence that local adaptation can occur despite asymmetric gene flow, though migration from the core may prohibit range expansion by reducing fitness in edge populations. Further, our multitransect study shows that multiple, nonmutually exclusive mechanisms can lead to range limits within a single species.

     
    more » « less
  5. Abstract

    We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) usingPopulus fremontii(Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i)gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue thatgENMs will lead to more accurate predictions of species distributions under climate change.

     
    more » « less