skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activity of bacteria isolated from bats against Pseudogymnoascus destructans in China
Summary White‐nose syndrome, a disease that is caused by the psychrophilic fungusPseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected withP. destructansbut show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limitingP. destructansgrowth remains unexplored. We isolated three bacterial strains with the ability to inhibitP. destructans, namely,Pseudomonas yamanorumGZD14026,Pseudomonas brenneriXRD11711 andPseudomonas fragiGZD14479, from bats in China.Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibitingP. destructansas phenazine‐1‐carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml−1. Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography‐mass spectrometry (GC‐MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3‐tert‐butyl‐4‐hydroxyanisole (isoprenol) and 100 ppm 3‐methyl‐3‐buten‐1‐ol (BHA) inhibited the growth ofP. destructans. These results support that bacteria may play a role in limiting the growth ofP. destructanson bats.  more » « less
Award ID(s):
1911853
PAR ID:
10363106
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Microbial Biotechnology
Volume:
15
Issue:
2
ISSN:
1751-7915
Format(s):
Medium: X Size: p. 469-481
Size(s):
p. 469-481
Sponsoring Org:
National Science Foundation
More Like this
  1. Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus,Pseudogymnoascus destructans, that invades their skin. Mechanisms ofP. destructansinvasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle ofP. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)–dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosedP. destructansblocks endolysosomal maturation, facilitatingP. destructanssurvival and germination after return to torpor. Blockade of EGFR abortsP. destructansentry into keratinocytes. 
    more » « less
  2. Abstract Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungusPseudogymnoascus destructans,has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detectP. destructansin environmental samples, we initiated this study to assess whetherP. destructanscan persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to twoP. destructanscontaminated hibernacula in Vermont where native bats had been excluded.Infection withP. destructanswas apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure toP. destructansis sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts. 
    more » « less
  3. Abstract Pseudomonas aeruginosa(P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser‐induced graphene (LIG) for developing flexible electrochemical sensors forP. aeruginosabased on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments withEscherichia coli, which does not produce phenazines, demonstrate specificity of sensors forP. aeruginosa. The LOD for pyocyanin (PYO) and phenazine‐1‐carboxylic acid (PCA) is 0.19 × 10−6 and 1.2 × 10−6 m, respectively. Furthermore, the highly stable sensors enable real‐time monitoring ofP. aeruginosabiofilms over several days. Comparing square wave voltammetry data over time shows time‐dependent generation of phenazines. In particular, two configurations—“Normal” and “Flipped”—are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis ofP. aeruginosainfection. 
    more » « less
  4. Mitchell, Aaron P (Ed.)
    The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis.Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats andP.destructansand provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature ofP.destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host–pathogen interactions, many of them yet to be discovered. 
    more » « less
  5. Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans ( Pd ). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd -infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro . We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host–pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases. 
    more » « less