skip to main content

Title: Genome size evolution in the diverse insect order Trichoptera
Abstract Background

Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages.


We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments).


Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-gene more » associations, particularly in groups with high species, ecological, and functional diversities.

« less
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implementedmore »a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx.« less
  2. Abstract Transposable elements (TEs) play major roles in the evolution of genome structure and function. However, because of their repetitive nature, they are difficult to annotate and discovering the specific roles they may play in a lineage can be a daunting task. Heliconiine butterflies are models for the study of multiple evolutionary processes including phenotype evolution and hybridization. We attempted to determine how TEs may play a role in the diversification of genomes within this clade by performing a detailed examination of TE content and accumulation in 19 species whose genomes were recently sequenced. We found that TE content has diverged substantially and rapidly in the time since several subclades shared a common ancestor with each lineage harboring a unique TE repertoire. Several novel SINE lineages have been established that are restricted to a subset of species. Furthermore, the previously described SINE, Metulj, appears to have gone extinct in two subclades while expanding to significant numbers in others. This diversity in TE content and activity has the potential to impact how heliconiine butterflies continue to evolve and diverge.
  3. Background: Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free living species is still lacking. Results: Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparisonmore »unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. Conclusions: Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.« less
  4. Abstract Background

    Most, if not all, green plant (Virdiplantae) species including angiosperms and ferns are polyploids themselves or have ancient polyploid or whole genome duplication signatures in their genomes. Polyploids are not only restricted to our major crop species such as wheat, maize, potato and the brassicas, but also occur frequently in wild species and natural habitats. Polyploidy has thus been viewed as a major driver in evolution, and its influence on genome and chromosome evolution has been at the centre of many investigations. Mechanistic models of the newly structured genomes are being developed that incorporate aspects of sequence evolution or turnover (low-copy genes and regulatory sequences, as well as repetitive DNAs), modification of gene functions, the re-establishment of control of genes with multiple copies, and often meiotic chromosome pairing, recombination and restoration of fertility.


    World-wide interest in how green plants have evolved under different conditions – whether in small, isolated populations, or globally – suggests that gaining further insight into the contribution of polyploidy to plant speciation and adaptation to environmental changes is greatly needed. Forward-looking research and modelling, based on cytogenetics, expression studies, and genomics or genome sequencing analyses, discussed in this Special Issue of the Annals of Botany,more »consider how new polyploids behave and the pathways available for genome evolution. They address fundamental questions about the advantages and disadvantages of polyploidy, the consequences for evolution and speciation, and applied questions regarding the spread of polyploids in the environment and challenges in breeding and exploitation of wild relatives through introgression or resynthesis of polyploids.


    Chromosome number, genome size, repetitive DNA sequences, genes and regulatory sequences and their expression evolve following polyploidy – generating diversity and possible novel traits and enabling species diversification. There is the potential for ever more polyploids in natural, managed and disturbed environments under changing climates and new stresses.

    « less
  5. Pritham, Ellen (Ed.)
    Abstract Transposable elements (TEs) comprise a major fraction of vertebrate genomes, yet little is known about their expression and regulation across tissues, and how this varies across major vertebrate lineages. We present the first comparative analysis integrating TE expression and TE regulatory pathway activity in somatic and gametic tissues for a diverse set of 12 vertebrates. We conduct simultaneous gene and TE expression analyses to characterize patterns of TE expression and TE regulation across vertebrates and examine relationships between these features. We find remarkable variation in the expression of genes involved in TE negative regulation across tissues and species, yet consistently high expression in germline tissues, particularly in testes. Most vertebrates show comparably high levels of TE regulatory pathway activity across gonadal tissues except for mammals, where reduced activity of TE regulatory pathways in ovarian tissues may be the result of lower relative germ cell densities. We also find that all vertebrate lineages examined exhibit remarkably high levels of TE-derived transcripts in somatic and gametic tissues, with recently active TE families showing higher expression in gametic tissues. Although most TE-derived transcripts originate from inactive ancient TE families (and are likely incapable of transposition), such high levels of TE-derived RNA inmore »the cytoplasm may have secondary, unappreciated biological relevance.« less