skip to main content


Title: Thermally driven magnon valve with perpendicular magnetic anisotropy

The active manipulation of quasiparticles, other than electrons, is a feasible alternative for developing the next generation of devices for information processing. Exploring magnons is advantageous as they can travel far and fast due to their low dissipation and high group velocity, transferring spin without charge transport, thus reducing the Joule heating. Moreover, magnon currents can switch a film's magnetization via a magnon torque facilitated by a perpendicular magnetic anisotropy (PMA). We demonstrate the proof of principle for three states' memories via transport studies of thermally excited magnon currents at room temperature in ferrimagnetic insulating magnon valves TmIG/Au/TmIG with PMA. While varying the relative TmIG magnetizations orientation, magnon currents excited in TmIG films are detected as a voltage in a top platinum electrode film due to the inverse spin Hall effect. The magnon transmission is maximum in the parallel state where the two signals sum up. Possibilities are seen for wave-based nonvolatile magneto-resistive random-access memory, sensing, and logic devices.

 
more » « less
PAR ID:
10363161
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
120
Issue:
8
ISSN:
0003-6951
Page Range / eLocation ID:
Article No. 082402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rare‐earth iron garnets have distinctive spin‐wave (SW) properties such as low magnetic damping and long SW coherence length making them ideal candidates for magnonics. Among them, thulium iron garnet (TmIG) is a ferrimagnetic insulator with unique magnetic properties including perpendicular magnetic anisotropy (PMA) and topological hall effect at room temperature when grown down to a few nanometers, extending its application to magnon spintronics. Here, the SW propagation properties of TmIG films (thickness of 7–34 nm) grown on GGG and sGGG substrates are studied at room temperature. Magnetic measurements show in‐plane magnetic anisotropy for TmIG films grown on GGG and out‐of‐plane magnetic anisotropy for films grown on sGGG substrates with PMA. SW electrical transmission spectroscopy measurements on TmIG/GGG films unveil magnetostatic surface spin waves (MSSWs) propagating up to 80 µm with a SW group velocity of 2–8 km s−1. Intriguingly, these MSSWs exhibit nonreciprocal propagation, opening new applications in SW functional devices. TmIG films grown on sGGG substrates exhibit forward volume spin waves with a reciprocal propagation behavior up to 32 µm.

     
    more » « less
  2. Abstract

    Spin waves, collective dynamic magnetic excitations, offer crucial insights into magnetic material properties. Rare‐earth iron garnets offer an ideal spin‐wave (SW) platform with long propagation length, short wavelength, gigahertz frequency, and applicability to magnon spintronic platforms. Of particular interest, thulium iron garnet (TmIG) has attracted huge interest recently due to its successful growth down to a few nanometers, observed topological Hall effect, and spin‐orbit torque‐induced switching effects. However, there is no direct spatial measurement of its SW properties. This work uses diamond nitrogen‐vacancy (NV) magnetometry in combination with SW electrical transmission spectroscopy to study SW transport properties in TmIG thin films. NV magnetometry allows probing spin waves at the sub‐micrometer scale, seen by the amplification of the local microwave magnetic field due to the coupling of NV spin qubits with the stray magnetic field produced by the microwave‐excited spin waves. By monitoring the NV spin resonances, the SW properties in TmIG thin films are measured as a function of the applied magnetic field, including their amplitude, decay length (≈50 µm), and wavelength (0.8–2 µm). These results pave the way for studying spin qubit‐magnon interactions in rare‐earth magnetic insulators, relevant to quantum magnonics applications.

     
    more » « less
  3. Abstract

    While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission. Meanwhile, understanding the underlying mechanism associated with spin transmission in insulators can help to identify new mechanisms that can further improve the spin transport efficiency. Here, by studying spin transport in a magnetic‐metal/magnetic‐insulator/platinum multilayer, it is demonstrated that coherent magnons can transfer spins efficiently above the magnon bandgap of magnetic insulators. Particularly the standing spin‐wave mode can greatly enhance the spin flow by inducing a resonant magnon transmission. Furthermore, within the magnon bandgap, a shutdown of spin transmission due to the blocking of coherent magnons is observed. The demonstrated magnon transmission enhancement and filtering effect provides an efficient method for modulating spin current in magnonic devices.

     
    more » « less
  4. Pure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator Cr 2 O 3 . We show that the thermally driven magnon spin currents reveal a spin-flop transition in thin-film Cr 2 O 3 . Crucially, this spin-flop can be turned on or off by applying an electric field across the thickness of the film. Using this tunability, we demonstrate electric field–induced switching of the polarization of magnon spin currents by varying only a gate voltage while at a fixed magnetic field. We propose a model considering an electric field–dependent spin-flop transition, arising from a change in sublattice magnetizations via a magnetoelectric coupling. These results provide a different approach toward controlling magnon spin current in antiferromagnets. 
    more » « less
  5. Abstract

    The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3are epitaxially grown on SrTiO3single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.

     
    more » « less