skip to main content


Title: Physical and Biological Controls of the Drake Passage pCO 2 Variability

The Southern Ocean is an important region of ocean carbon uptake, and observations indicate its air‐sea carbon flux fluctuates from seasonal to decadal timescales. Carbon fluxes at regional scales remain highly uncertain due to sparse observation and intrinsic complexity of the biogeochemical processes. The objective of this study is to better understand the mechanisms influencing variability of carbon uptake in the Drake Passage. A regional circulation and biogeochemistry model is configured at the lateral resolution of 10 km, which resolves larger mesoscale eddies where the typical Rossby deformation radius is(50 km). We use this model to examine the interplay between mean and eddy advection, convective mixing, and biological carbon export that determines the surface dissolved inorganic carbon and partial pressure of carbon dioxide variability. Results are validated against in situ observations, demonstrating that the model captures general features of observed seasonal to interannual variability. The model reproduces the two major fronts: Polar Front (PF) and Subantarctic Front (SAF), with locally elevated level of eddy kinetic energy and lateral eddy carbon flux, which play prominent roles in setting the spatial pattern, mean state and variability of the regional carbon budget. The uptake of atmospheric CO2, vertical entrainment during cool seasons, and mean advection are the major carbon sources in the upper 200 m of the region. These sources are balanced by the biological carbon export during warm seasons and mesoscale eddy transfer. Comparing the induced advective carbon fluxes, mean flow dominates in magnitude, however, the amplitude of variability is controlled by the eddy flux.

 
more » « less
Award ID(s):
1744755
NSF-PAR ID:
10363221
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
34
Issue:
9
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subseasonal surface wind variability strongly impacts the annual mean and subseasonal turbulent atmospheric surface fluxes. However, the impacts of subseasonal wind variability on the ocean are not fully understood. Here, we quantify the sensitivity of the ocean surface stress (𝛕), buoyancy flux (B), and mixed layer depth (MLD) to subseasonal wind variability in both a one‐dimensional (1‐D) vertical column model and a three‐dimensional (3‐D) global mesoscale‐resolving ocean/sea ice model. The winds are smoothed by time filtering the pseudo‐stresses, so the mean stress is approximately unchanged, and some important surface flux feedbacks are retained. The 1‐D results quantify the sensitivities to wind variability at different time scales from 120 days to 1 day at a few sites. The 3‐D results quantify the sensitivities to wind variability shorter than 60 days at all locations, and comparisons between 1‐D and 3‐D results highlight the importance of 3‐D ocean dynamics. Globally, subseasonal winds explain virtually all of subseasonal𝛕variance, about half of subseasonalBvariance but only a quarter of subseasonal MLD variance. Subseasonal winds also explain about a fifth of the annual mean MLD and a similar and spatially correlated fraction of the mean friction velocity,whereρswis the density of seawater. Hence, the subseasonal MLD variance is relatively insensitive to subseasonal winds despite their strong impact on localBand𝛕variability, but the mean MLD is relatively sensitive to subseasonal winds to the extent that they modify the meanu*, and both of these sensitivities are modified by 3‐D ocean dynamics.

     
    more » « less
  2. Abstract

    Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO2as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air‐water CO2flux (FCO2) remains poorly understood. In this study, we synthesized all available direct FCO2measurements over seagrass meadows made using atmospheric Eddy Covariance, across a globally representative range of ecotypes. Of the four sites with seasonal data coverage, two were net CO2sources, with average FCO2equivalent to 44%–115% of the global average BC burial rate. At the remaining sites, net CO2uptake was 101%–888% of average BC burial. A wavelet coherence analysis demonstrated that FCO2was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing was a key driver of global‐scale patterns in FCO2, likely due to a combination of lateral carbon exchange, bottom‐driven turbulence, and pore‐water pumping. Lastly, sea‐surface drag coefficients were always greater than the prediction for the open ocean, supporting a universal enhancement of gas‐transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air‐water CO2exchange, and its complex biogeochemical and physical drivers.

     
    more » « less
  3. Abstract

    Kilometer‐scale grid spacing is increasingly being used in regional numerical weather prediction and climate simulation. This resolution range is in the terra incognita, where energetic eddies are partially resolved and turbulence parameterization is a challenge. The Smagorinsky and turbulence kinetic energy 1.5‐order models are commonly used at this resolution range, but, as traditional eddy‐diffusivity models, they can only represent forward‐scattering turbulence (downgradient fluxes), whereas the dynamic reconstruction model (DRM), based on explicit filtering, permits countergradient fluxes. Here we perform large‐eddy simulation of deep convection with 100‐m horizontal grid spacing and use these results to evaluate the performance of turbulence schemes at 1‐km horizontal resolution. The Smagorinsky and turbulence kinetic energy 1.5 schemes produce large‐amplitude errors at 1‐km resolution, due to excessively large eddy diffusivities attributable to the formulation of the squared moist Brunt‐Väisälä frequency (). With this formulation in cloudy regions, eddy diffusivity can be excessively increased in “unstable” regions, which produce downward (downgradient) heat flux in a conditionally unstable environment leading to destabilization and further amplification of eddy diffusivities. A more appropriate criterion based on saturation mixing ratio helps eliminate this problem. However, shallow clouds cannot be simulated well in any case at 1‐km resolution with the traditional models, whereas DRM allows for countergradient heat flux for both shallow and deep convection and predicts the distribution of clouds and fluxes satisfactorily. This is because DRM employs an eddy diffusivity model that is dynamically adjusted and a reconstruction approach that allows countergradient fluxes.

     
    more » « less
  4. All exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.

     
    more » « less
  5. Abstract

    The partial pressure of carbon dioxide (pCO2) was surveyed across the Amazon River plume and the surrounding western tropical North Atlantic Ocean (15–0°N, 43–60°W) during three oceanic expeditions (May–June 2010, September–October 2011, and July 2012). The survey timing was chosen according to previously described temporal variability in plume behavior due to changing river discharge and winds.In situsea surfacepCO2and air‐sea CO2flux exhibited robust linear relationships with sea surface salinity (SSS; 15 < SSS < 35), although the relationships differed among the surveys. Regional distributions ofpCO2and CO2flux were estimated using SSS maps from high‐resolution ocean color satellite‐derived (MODIS‐Aqua) diffuse attenuation coefficient at 490 nm (Kd490) during the periods of study. Results confirmed that the plume is a net CO2sink with distinctive temporal variability: the strongest drawdown occurred during the spring flood (−2.39 ± 1.29 mmol m−2 d−1in June 2010), while moderate drawdown with relatively greater spatial variability was observed during the transitional stages of declining river discharge (−0.42 ± 0.76 mmol m−2 d−1in September–October 2011). The region turned into a weak source in July 2012 (0.26 ± 0.62 mmol m−2 d−1) when strong CO2uptake in the mid‐plume was overwhelmed by weak CO2outgassing over a larger area in the outer plume. Outgassing near the mouth of the river was observed in July 2012. Our observations draw attention to the importance of assessing the variable impacts of biological activity, export, and air‐sea gas exchange before estimating regional CO2fluxes from salinity distributions alone.

     
    more » « less